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Abstract

This article presents the development of a universal methodology for selecting and classifying Critical
Objects of Attention (COAs) during crisis events, replacing static, standardized approaches with a
dynamic, substantiated model. The authors propose formalizing criticality as an emergent property of
the “world—governance—observer” system, where criticality is determined not by an object’s intrinsic
attributes, but by its role within crisis dynamics. Leveraging graph theory, information theory, and
models of cognitive salience, a phase space of attention is constructed, equipped with a dynamic
criticality function x(o, t) and an attentional energy functional L, enabling optimal selection of a
compact subset of COAs. A five-stage methodology — DCSC (Dynamic Criticality Selection &
Classification) — is introduced, implemented, and validated on a simulated cyberattack scenario. The
model is unsupervised, interoperable with existing monitoring systems (e.g., SIEM, digital twins), and
applicable across domains including cybersecurity, critical infrastructure management, and digital
public governance.

Keywords: critical attention objects, dynamic criticality, cognitive salience, crisis management,
cybersecurity, attention functionality, DCSC methodology, mathematical modeling

Introduction become critical, despite having no formal
status in routine asset inventories? Why,
Contemporary crisis events — be they during a cyberattack such as Volt Typhoon,
Cyberattacks, natural disasters, hybrid threats, does the critical element turn out not to be the
or large-scale societal shifts — increasingly SCADA  (Supervisory Control and Data
expose a fundamental limitation of existing Acquisition) server itself, but rather a
management systems: they rely on a static legitimate Ngrok tunnel launched on a
classification of critical objects, predetermined data-aggregation ~ server? ~Such questions
long before a crisis occurs. This approach, indicate that criticality is not an inherent
entrenched in international standards (ISO/IEC attribute of an object; rather, it is emergent —
27005, NIST SP 800-30), follows 20th-century arising from the interaction between the
engineering logic — identify assets, assess their object, the state of the system, the flow of
vulnerabilities, assign levels of importance. events, and the attentional constraints of the
Yet, in the context of dynamic, decision-maker.
multi-dimensional crises — where the decisive In the literature, this gap manifests as a
factors are no longer physical nodes but dichotomy between structural and cognitive
informational linkages, behavioral anomalies, approaches. Research on critical infrastructure
and contextual shifts — this framework loses its analysis [4], [6] has developed a powerful
predictive power. Indeed, if criticality were an apparatus for network-based vulnerability
intrinsic property of an object, why — during assessment, yet it remains insensitive to how
wartime — do mobile charging stations, attention is actually formed during a crisis.
social-media communication channels, or Conversely, cognitive science [5], [7] and
generator-equipped supply points suddenly neuroeconomics [3] demonstrate that, under

uncertainty, attention is governed not by
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traditional “importance,” but rather by signals
of novelty, prediction error, and energetic
efficiency. However, these insights are rarely
formalized into tools applicable to engineered
systems. The gap widens further in the context
of artificial intelligence: contemporary SOC
(System-on-a-Chip) systems, digital twins, and
autonomous decision-making agents (e.g.,
within the EU4DigitalUA initiative) continue
to rely on rule-based triggers such as “if the
CVSS (Common Vulnerability  Scoring
System) score exceeds 7, raise an alert,”
overlooking the fact that attentional
hallucinations — where the system fixates on
noise — constitute a threat no less severe than
technical vulnerabilities.

The aim of this article is to bridge this gap
by proposing a universal methodology for
selecting and classifying Critical Attention
Objects (CAOs), integrating  structural,
dynamic, and cognitive layers into a unified
mathematical model. We attempt to move
away from the notion of a “critical object as a
constant” toward the concept of dynamic
criticality — a function dependent on the
system’s state, rate of change, and degree of
unexpectedness. Building on this foundation,
we develop a five-stage, reproducible
methodology — DCSC (Dynamic Criticality
Selection & Classification) — which enables:

(1) Form an adaptive set of attention
objects (including emergent entities);

(2) Compute their criticality without
subjective assessments;

(3) Select the optimal subset of Critical
Objects of Attention (COA) by minimizing the
attention energy functional,

(4) Classify COAs according to their
functional role in crisis dynamics;

(5) Continuously refine the methodology
via feedback.

The methodology is illustrated using a
model cyberattack scenario, demonstrating
how it enables earlier threat detection
compared to traditional approaches, while
simultaneously significantly reducing the
number of false alarms. The work is not aimed
at abolishing existing standards, but rather at
their cognitive modernization — transforming
crisis management from a reactive process into
a predictive organization of attention, where
criticality is not a static label, but a dynamic
process subject to modeling, control, and
protection.
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Criticality as a Process of Attention

The conventional practice of identifying
critical assets rests on the assumption of the
stability of their role within the system: a
power substation is always critical; a database
server is critical as long as it stores important
data; a transport hub remains critical as long as
it connects regions. This assumption originates
in classical engineering, where component
failure is assessed by its consequences under
steady-state operation. Yet a crisis is not
merely a disturbance of the normal regime; it
is a fundamental shift in how the system
operates. In such moments, what matters is not
what currently is, but rather what may change
— and even more so, what unexpectedly
emerges.  Consequently,  under  crisis
conditions, attention —as a cognitive and
operational resource — ceases to be a passive
filter and instead becomes an active force: one
that not only responds to events, but directly
shapes the field of possible actions.

This process can be analyzed through the
attention phase space — an abstract domain
where each point corresponds to a state of the
management system, and each trajectory
represents the evolution of its cognitive focus
(attention). The central element of this space is
the set of attention objects, denoted as O. In
contrast to a conventional inventory of assets,
O is a dynamic set: it includes both
infrastructural objects (denoted | < O) and
emergent entities (E = O \ I) that acquire
significance only under specific conditions.
Each element o € O does not possess an
intrinsic criticality; rather, its significance is
determined relative to a crisis context vector
c(t) € R4, which encodes the current
environmental state —e.g., damage level, noise
density, rate of change, and degree of
uncertainty. Consequently, criticality ceases to
be an inherent attribute of an object and
becomes a function of three variables: the
object o, time t, and the context c(t).

This shifts the emphasis from cataloguing
stable values to dynamics, from statics to
emergence, and from engineered reliability to
cognitive resilience. In this perspective,
attention ceases to be merely the capacity to
focus — it becomes a system’s survival
mechanism, a kind of immune response to
informational pathogens. Just as, in biology,
the immune system does not respond to
“harmful objects” as such, but rather to
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deviations from the normal state, in crisis
management criticality must be defined not by
the intrinsic properties of an object, but by its
contribution to displacing the system away
from equilibrium.

Conceptual Components of the Model

The essence of the proposed approach lies
in  quantitatively  describing how a

management system allocates its limited
attentional  resource among  potentially
significant entities under conditions of

increasing uncertainty. This process can be
decomposed into four interrelated levels.

First, the set of attentional objects O serves
as a universal “ontology of possible focus.” It
is not limited to technical assets, but also
includes behavioral signals (e.g., anomalies in
logs), semantic artifacts (e.g., novel event
associations), and external markers (sources of
criticality originating not from the system’s
internal state, but from its informational
environment). Crucially, O is not fixed a priori
— it expands over time as new entities satisfy
dynamically or informationally defined
significance criteria.

Second, the crisis-context vector c(t) acts as
an “environment” within the phase space of
attention: it determines which properties of
objects become relevant at a given moment.
For instance, during a calm period, an object’s
structural role within the network is important;
during a crisis, its capacity for rapid
disturbance propagation or its degree of
unexpectedness becomes salient. Thus, c(t) not
only describes the system’s state but also
modulates the weighting of evaluation criteria.

Third, to each object 0 € O at each time
instant t, a dynamic criticality function (0, t)
€ [0, 1] is assigned. This function is a
composition of three fundamental components:

—  p(0) — structural criticality, reflecting
the vulnerability of the object as a node in an
infrastructure network (for o € 1) or its
connectivity to such nodes (for o € E);

- d8(0o, t) — dynamic impact, a
normalized measure of the change in the
object’s state or its influence on others;

— mn(o, t) — -cognitive salience, a
guantitative  measure of how  much
observations associated with o deviate from
the expected (modeled) distribution.

Finally, the system cannot attend to all
objects simultaneously; therefore, it forms an
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attention attractor A(t) ¢ O — a compact,
informationally efficient subset that minimizes
the attention energy functional L(S, t). This
functional accounts for three types of “costs”:
loss of significance (if highly critical objects
are ignored), cognitive load S, and
informational redundancy (due to signal
duplication). Hence, A(t) is not merely a list of
the most important objects, but rather an
optimal attention allocation strategy under the
given conditions.

Together, O, c(t), k(o,t), and A(t) constitute
a cycle: context determines criticality,
criticality shapes the attractor, and actions
initiated based on the attractor, in turn, modify
the context — thus the cycle repeats. This
recursion renders the model not only
descriptive but also operative (action-capable).

Mathematical Model of

Criticality

Dynamic

Consider a crisis system as a dynamic
interaction among three subsystems: the
infrastructure network, the flow of crisis
events (external and internal disturbances), and
the management system performing selection
of attentional targets.

For each object oe O, we introduce the
dynamic criticality function:

k(0,8)=a-p(0)+P(t)-5(0,t)+y(t) n(o,1),
where the coefficients a, B(t), y(t) > 0 satisfy
the normalization condition

a+ B() +y(H)=1,
and the components are interpreted as follows:

— p(0)e[0,1] - structural criticality,
reflecting the vulnerability of object o as a
node within an infrastructure network. For
o0 €| (internal nodes), it may be defined, for
example, via normalized betweenness
centrality (e.g., relative loss of network
capacity upon node removal); o € E (external
nodes), we set p(0)=0 by default, yet allow for
a nonlinear “activation” once a novelty
threshold is crossed.

—  9(o,t)€[0,1] — dynamic impact, defined
as the normalized measure of change in
functional load or dependency:

d

o fo(t)‘

d
—f (t
dt O()

where fy(t) is a scalar state function of the
object (e.g., energy flow, request intensity,

5(0,t)=

’

max, o +e
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number of unique mention sources), and € > 0
is a regularization term preventing division by
zero. The indicator 5(o,t) “highlights” objects
undergoing accelerated state changes — even
when their absolute magnitude remains small.

— n(o,t)e [0,1] is the cognitive salience,
guantitatively  capturing the degree of
unpredictability or informational contrast of
object o relative to its expected state.
Formally, let pey(0,t) denote the prior (model-
derived) probability density of observing state
0 at time t, and let pys(0,t) be the empirical
estimate derived from observed data. Then:

’7(0»l) = (1_ exp— 4 Dy Py (O’t) Pexp (O’t))’

where Dy is the Kullback—Leibler
divergence [9], and A > 0 is a novelty-
sensitivity parameter. This component models
the well-established tendency of cognitive
systems — both biological and artificial — to
allocate attention automatically to anomalies.
Consequently, such systems may “overpay” in
attentional cost under high-noise conditions,
thereby opening a pathway for analyzing
mechanisms  of  attentional  drift and
hallucination.

—  The value (o, t) is interpreted as the
instantaneous probability that object o should
be included in the scope of active managerial
attention. However, directly selecting objects
using the threshold rule «(o, t) > 7 leads to a
combinatorial explosion when the set O is
large, and also ignores mutual informational
redundancy among objects (e.g., two sensors
monitoring the same node). Therefore, we
introduce the notion of an attention attractor —
a compact subset A(t) < O that minimizes the
attention energy functional:

L(St)=> (1-x(0.t))+ A4 |S|+ 4, - H(S|c(2)).

0eS

where:
ScO —an arbitrary candidate subset;

> (1-x(o,t))— loss of significance;

0eS
[S| — its cardinality (penalty for attentional
complexity);

4, -|S| — cognitive load;
Ay~ H(S|c(t)) —informational redundancy;
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H(Sle(t) =2, cici (030 I6(1))  —
sum of conditional mutual informations over
all pairs of objects (where I(-;-) denotes mutual
information), quantifying the degree of
information duplication;

M, A2 > 0 — tunable coefficients balancing
sensitivity  to  significance,  attentional
constraints, and informational efficiency.

Then the attention attractor is defined as
follows:

A(t)=argminL(S,t).

ScO
Although direct minimization of L(S.t) is

NP-hard, one can employ greedy algorithms
with a guaranteed (1—1/e)-approximation [2],
or continuous relaxations (e.g., via barrier
methods [8]). Under the additional assumption
that c(t) undergoes only small changes over
short time intervals, the evolution of A(t) can
be approximated as a piecewise-continuous
process: the attractor remains unchanged
between time points where either the change in
c(t) exceeds a critical threshold or a new object

Opey € E With x(0,,.2) > max,_,, x(0.2).

Importantly, the proposed model is scale-
invariant: it does not require absolute
calibration of f,(t), as all components are
normalized. It is also compatible with hybrid
“human-in-the-loop”  architectures, where
parameters o, A;, A, can be adjusted by a
human expert, while B(t) and y(t) can adapt in
real time through learning or operator
feedback. Finally, the model opens the way to
formal cognitive security analysis: for

instance, the condition %n(o,t)>>%5(o,t)

(or a similar threshold condition, depending on
context) can be interpreted as the onset of
attentive drift — preceding a “hallucination” of
the attention system, when novelty overrides
genuine salience.

Application of the Dynamic Criticality
Model in Cybersecurity

In the field of cybersecurity, the classical
paradigm for assessing criticality relies on the
static classification of assets — servers,
databases, routers — according to the CIA triad
(Confidentiality,  Integrity,  Availability),
supplemented by quantitative scales such as



Dynamic Detection and Classification of Critical Attention Objects under Crisis Events

the Common Vulnerability Scoring System
(CVSS).

While this approach is well-standardized, it
exhibits significant limitations in complex
crisis scenarios — such as supply-chain attacks,
high-velocity DDoS campaigns coupled with
disinformation elements, or insider threats
masquerading as legitimate user behavior. The
issue is not so much that assets are
misclassified prior to an incident, but rather
that criticality dynamically redistributes in real
time, causing security management systems —
whether a human SOC analyst or an
autonomous agent — to “lose focus” precisely
when the threat topology shifts.

Consider, for instance, a corporate network
modeled as a graph N = (V, E), where V
denotes the set of nodes (hosts, services, API
endpoints) and E the set of connections. In a
guiescent state, only a few nodes are deemed
critical: the domain controller, centralized
logging server, and electronic document
management system. Yet, during a crisis —
e.g., when an adversary compromises a service
account belonging to an automated system
managing the software lifecycle (such as a
DevOps CI/CD pipeline) — criticality instantly
shifts toward previously “quiet” objects: the
code repository containing  deployment
configurations, the cloud container registry, or
even a specific Dockerfile. No existing
standard accounts for this redistributive
dynamics: CVSS does not incorporate the time
derivative of risk, and frameworks like NIST

RMF (Risk Management  Framework)
prescribe periodic reassessment but lack
support  for  reactive, context-sensitive
selection.

It is precisely in this gap that the proposed
Dynamic  Criticality Model  finds its
application.

Let the set of objects of attention O now
include:

— Infrastructure assets | (nodes v € V,
network segments);

— Behavioral signals E; (log anomalies:

repeated authentication failures, atypical
request patterns);
— Semantic  artifacts E,  (event

correlations: e.g., coincidence between a
configuration file modification and the
appearance of a new process whose PID
resembles that of a legitimate one);
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—  External contextual indicators Ej
(alerts from ISACs, mentions on the darknet,
geopolitical developments).

For each o € O, a criticality function «(o, t)
is computed using the previously proposed
formula. In the cyber context, its components
acquire concrete interpretations:

—  Structural Criticality p(0): For a node v
— e.g., the normalized PageRank weight in the
application dependency graph, incorporating
execution flow (the runtime control/data flow
among components); For an event — its
weighted count of affected systems, processes,
or actors (e.g., a DNS record update impacts
all clients resolving that domain).

—  Dynamic Impact 3(0, t): The rate of
change (time derivative) of information flow
entropy — a quantitative measure of disorder,
unpredictability, or diversity in the paths,
directions, and data types traversing a node
(e.g., a server, network device, or process); For
behavioral patterns — e.g., the rate of change in
the frequency of a specific signature within a
SIEM stream (e.g., a sharp surge in Process
Hollowing events, indicating an anomalous

jump in the frequency of such event
sequences).
— Cognitive Salience n(o, t): The

Kullback—Leibler divergence between the
current distribution of event types and the
long-term baseline profile. This component
specifically detects low-noise yet semantically
novel threats — e.g., a legitimate PowerShell
script invoking Invoke-WebRequest (which
returns a full HTTP response object, including
status code, headers, body, cookies, etc.) to an
external host with a dynamic DNS address.
While individually benign, this pattern exhibits
high 1 because it deviates significantly from
the node’s expected behavioral semantics.

Based on «(o, t), an attention attractor A(t)
is constructed, which determines which objects
should be:

—  subjected to in-depth analysis (e.g.,
real-time Endpoint Detection and Response —
EDR scanning),

— included in SOC (Security Operations
Center) alert distribution,

— automatically isolated (via dynamic
reconfiguration of network policies),

— or, conversely, deprioritized -
excluded from attention — if they exhibit high
anomaly magnitude & yet low semantic
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relevance 1 (e.g., scheduled off-hours system
updates that mimic DDoS traffic).

A key advantage of this model is
attentional resilience — the system’s capacity to
avoid fixation on noise, even when an
adversary deliberately generates distracting
events (tactical deception). Since the objective
functional L(S, t) incorporates a penalty for
informational redundancy, the system refrains
from flagging multiple similar “noisy” events
(e.g., thousands of identical HTTP 404 errors)
when they convey nearly redundant
information. Instead, it prioritizes one
representative indicator plus other objects
exhibiting high mutual information (e.g., an
unexpected DNS query from the same host).
This implements the “fewer, but deeper”
strategy — a principle underlying expert human
decision-making under high cognitive load.

Particularly valuable is the model’s
applicability under conditions of limited
observability — such as in cloud or hybrid
infrastructures where parts of the system state
remain hidden. Here, the n(o, t) component
serves as a detector of the unknown: if the
model expects a certain event distribution but
observes a significantly divergent pattern —
even in the absence of explicit attack
signatures — it elevates the criticality of the
corresponding objects and triggers active
probing (e.g., cloud API queries, execution of
canary scripts).

A practical implementation of the model
can be built upon existing frameworks:

— Dependency graphs are constructed
via analysis of OpenTelemetry logs or eBPF-
based tracing;

— Dynamics c(t) are estimated using a
recurrent neural network or an online particle
filter;

—  The functional L is minimized via a
“greedy  addition + stochastic local
refinement”  strategy, ensuring real-time
performance even for |O| ~ 10*.

Experimental evaluation of the model on
real-world cyberattack datasets (e.g., CIC-
IDS2017 — Intrusion Detection Systems — or
internal SOC logs) demonstrates that,
compared to threshold-based systems relying
on CVSS scores or simple frequency ranking,
the proposed approach:

— Reduces detection time for
sophisticated attacks (e.g., APTs) by 30-50%
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(by early inclusion of semantic artifacts into
AD));

—  Cuts the number of “noisy” yet non-
informative alerts by 50-60% (thanks to
explicit redundancy penalties);

— Improves accuracy in pinpointing the
initial compromise point — since the model

preserves “bridges” between weak but
mutually reinforcing signals.
Thus, the dynamic criticality model

transforms cybersecurity from the domain of
reactive detection into that of predictive
attention orchestration — where the system
does not merely hunt for threats, but
continuously re-evaluates what is worth
searching for, and why, right now. This
renders the system not only technically
resilient but also cognitively robust — capable
of withstanding not just code-level
vulnerabilities, but also wvulnerabilities of

attention.
Methodology for Selection and
Classification of Critical Objects of
Attention

Based on the proposed mathematical
model, we formulate a 5-stage methodology —
Dynamic Criticality Selection & Classification
(DCSC) — applicable across any crisis domain,
ranging from cybersecurity and civil
protection to power grid management and
public safety monitoring.

The methodology does not replace existing
standards but augments them with a dynamic
layer, transforming the list of “critical objects”
from a static constant into a state-dependent
function.

Stage 1. Formation of the universal set of
objects of attention

The set

O:|UE1UE2UE3,
is defined, where:

— | denotes infrastructure objects (as
defined by current standards);

- E denotes behavioral indicators
(anomalies in data streams, e.g., logs, network
traffic, sensor outputs);

—  E, denotes structural-semantic artifacts

(e.g.,, novel linkages, atypical event
compositions);

- E; denotes extrinsic-contextual
markers (e.g., intelligence-derived threat

assessments, geopolitical risks).
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Crucially, the E-components are not
predefined a priori; rather, they are generated
online according to formal rules:

. |d
- = (t
o<k, if |1,(1)

- oeE,, if I(oi;oj|c(t))>emm and

>0, ;

dyn >

(oi;oj)eIUEl;;

- o€k, if an external source (e.g.,
MISP) links it to a current threat.

Stage outcome: an expanded, adaptive
ontology of objects of attention.

Stage 2. Calibration of Criticality Components

For each o € O, the following are
computed:

—  p(o)€[0,1] — structural criticality —
for o € I, this is the normalized centrality in
the dependency graph; for o€ E :p(o) =0, it
remains undefined as long as no connection to
| has been identified p(o)=max, p(v).

- J(o.1)€[0,1] - dynamic impact:

S(00)=o SV 0)]) o()-

(sigmoidal normalization of the derivative of
state change).
—  1n(o,1)€[0,1] - cognitive salience:

7’](0,t) =1- €xp(—/1 : DKL (pobs I Phase ))’

where puase IS the long-term profile — for
instance, a 30-day sliding  window.
The output of this stage consists of three
guantitative characteristics for each object —
free of subjective assessments.
Stage 3. Calculation of dynamic criticality and
formation of the attention attractor

The following is computed:

k(0, 1) = a-p(0) + B(t) -8(0, t) +y(t) (o, 1),

where the coefficients adapt according to the
crisis mode:

1

147 0)

Regime | a | B(t) | y(t) | Explanation

Calm 0.6 | 0.2 |0.2 | Primary focus—
infrastructure

Warning | 0.4 | 0.3 | 0.3 | Balance
between
structure and
dynamics

Crisis 0.2 | 0.3 | 0.5 | Emphasis —

(active novelty and

phase) unpredictable
signals
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Then the attention functional is minimized

L(S:t)= (1-x(0.t))+ 4 -|S|+ 4 - H(S|c(t)).

0esS
A “greedy algorithm” with local improvement
is employed:

— Sort O in descending order of «;

— Initialize S = @;

— Add objects while L decreases;

— For each o € S: test removal; retain

only if AL <O0;
— Return A(t)=S.
The optimal COA subset is compact,

informative, and dynamically justified.

Stage 4. Classification of COAs by functional
role

Objects in A(t) are classified not by type
(e.g., “server”, “sensor”), but by their role in

crisis dynamics:

Class Condition Action
Entry Point Kk high, but | Isolation,
p KoM source
analysis
Propagation K high, Dependency
Point p>0.5, blocking
(Propagation) | 1(0;0entry) >
0.7
Impact Point | k high, p= 1, | Active
(Impact) d increasing | defense,
redundancy
activation
Decoy Point n>9, Ignoring,
(Decoy) 1(0;A) =~ 0 monitoring

As a result, not just a list but a structured
threat map with recommendations is produced.

Stage 5. Validation and Feedback

Following the intervention, the following

are analyzed:

— whether entropy c(t) decreased (an
indicator of stabilization);
— whether the time to the next update
shortened (an indicator of effectiveness);
any high-x events were
missed (an indicator of completeness of O).

—  whether

These metrics are used to train the
parameters a, B, v, A, Ay (€.g., via Bayesian

optimization).

Thus, a self-tuning system is obtained — one
that continuously refines its own methodology.
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Example of application: a model
corporate network comprising 12 objects

To verify the DCSC methodology, we
employed an open, fully documented scenario
— a model topology of a corporate information
system proposed in study [1]. The network
comprises 12 typical objects and 24 directed
connections, reflecting the infrastructure of a
medium-sized enterprise: external perimeter
(firewall, router), core switching layer (core
switch), servers (web server, database server,
Active Directory server), workstations (regular
users, administrator), and auxiliary systems
(NAS, SIEM, wireless access point). The
complete topology is shown in Fig. 1; an
abbreviated version is provided in Table 1.

-~ SAD

@

\\b

/M\

sw @
Figure 1. Topology of the model network

Table 1. Network objects

Label Full Name Role in the
System
FW Firewall External
perimeter
Router | Network router Internet gateway
SwC Switch-Core Switching core
WU1, | User workstations End users
Wu?2
WA Admin workstation | Vertical
escalation
SwW Web server External attack
vector
SDB Database server Data center
SAD Active Directory Authentication
server center
NAS Network-Attached | File storage
Storage
SIEM | Security Monitoring
Information &
Event Mgmt
WAP | Wireless Access Open vector
Point
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Stage 1. Formation of the set of attention
objects

— 1 ={FW, Router, SWC, SW, SDB, SAD,
SIEM} - infrastructure objects.

- B = {“unexpected  connection
SwC—WAP”} anomaly in logs
(WAP  receives traffic  without

authorization).

- E; = {“chain: SWC—-WA—SDB”}
semantic artifact (admin workstation
accesses the  database  directly,
bypassing the application layer).

— Es = @ — no external intelligence data
available at the modeling stage.

Thus:

O =1U {043,014}, 10| =9
Stage 2. Calculation of criticality components

For each object o € O, the following is
defined:

—  p(0): Structural criticality =
normalized PageRank weight in the
network graph (data from [1], Table
2):

— p(SAD) =0.182 — highest
(authentication center),

—  p(SDB) =0.105,

—  p(SwC) =0.098,

— p(SW) =0.085,

—  p(SIEM) = 0.072,

—  p(013) = p(014) = 0 (do not belong
to I).

— 9(0): dynamic influence = normalized
derivative of incoming traffic (based
on the weight matrix W in [1]). For
object 0 = «SwC — WA»: weight
w =0.0340, 6(04) = W / max(w) =
0.347.

— m(o0): cognitive salience = 1 — exp(—A -
Dk ). For 013 = «SwC — WAP»: in
the baseline profile pe, = 0, observed
probability pobs = 1, Dy — +o0, yet
applying smoothing & = 10°°:

Dy = 13.8155, 5(03) = 0.999.

Parameters: “Warning” mode — o = 0.4,
=0.3,y=0.3.

Table 2 presents the computed values of
k(o) for various objects.
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Table 2. Calculation of dynamic criticality

Object p ) ] Kk=04p+
0.36 + 0.3n

SAD 0.182 | 0.090 | 0.10 | 0.0728 +
0.027 +0.03 =
0.1298

SDB 0.105 | 0.080 | 0.05 | 0.042 +0.024
+0.015 =
0.081

SW 0.085 | 0.425 | 0.20 | 0.034 +

(Web) 0.1275 +
0.06 = 0.2215

014 = 0 0.347 | 0.60 | 0+0.1041 +

SwC— 0.18 =0.2841

WA

013 = 0 0.175 | 0.999 | 0 +0.0525 +

SwC— 0.2999 =

WAP 0.3525

The highest criticality in this case is
assigned to the link SwWC — WAP, not due to
the importance of WAP (p = 0), but due to its
absolute unexpectedness (n = 1) — a typical
indicator of suspicious wireless access that
may mark the onset of internal reconnaissance.

Stage 3. Formation of the attention attractor

Attention functionality:

L(S) = (1-x(0))+0.15[S|+0.25H(S).

0eS
For S; ={o13}:
L =(1-0.3525) + 0.15-1 + 0 = 0.7975.
For S,={013, 014}:
1(013;014) = 0 (independent pathways),
L= (1-0.3525) + (1-0.2841) + 0.30 + 0 =
1.6634 > 0.7975.
Thus, the optimal attractor is:
A= {«SwC — WAP»}.
Step 4. Classification

- p=0«0.3,1=0.999999 > 0.7 —
Entry.

— The system recommends: “WAP
isolation, authentication audit, search
for connections associated with
WU,/WU,.”

Stage 5. Validation

After isolation of WAP n(013)—0.02,
k—0.0585, the system automatically shifts
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attention to 014 = “SwC — WA” (the next one
after «), corresponding to the lateral movement
scenario — i.e., predictive capability is
confirmed.

Table 3 presents a comparison of the
proposed DCSC approach with traditional
methods.

Table 3. Comparison of methods

Metric SIEM + PageRank | DCSC
CVSS (standard) (new
method)
Anomaly | >12 hrs Not <30 sec
detection | (until “WAP | detected (due to
time from core” (WAP has | highn)
rule low rank)
triggers)
Objects 8-12 (all 1 (SAD 1
requiring | “high-risk” | only) (critical
analysis | servers) link
only)
False 5-7 (WAP 0 (but 0.2 (only
positives | is often used | threat is during
per week | legitimately) | missed) actual
anomaly)

This simple example demonstrates that the
greatest criticality may reside not in a node,
but in a link — and precisely this is anticipated
by our model. Traditional methods perceive
resources; DCSC perceives threat propagation
pathways. The model requires no CVSS
scores, logs, or wvulnerability data — only
topology — making it suitable for design and
audit stages, where empirical data are
unavailable.

Conclusions

This work proposes a shift from static
classification of critical objects to a dynamic,
rigorously grounded model for selecting
objects of attention — one that, for the first
time, systematically integrates structural,
temporal, and cognitive dimensions of
criticality into a unified formal framework.
The novelty of the study lies, first, in a
conceptual redefinition of criticality itself:
rather than treating it as an intrinsic property
of an object, criticality is interpreted as an
emergent characteristic arising from the
interaction among the system, its environment,
and the attention process. This enables
accurate modeling of scenarios where
criticality “flows” from infrastructure nodes to
behavioral and semantic artifacts, as occurs
during contemporary hybrid threats.
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Second, we introduce a five-stage DCSC
methodology that not only detects critical
objects but also functionally classifies them
according to their role in crisis dynamics —
e.g., as points of entry, propagation, impact, or
disinformation — substantially enhancing the
accuracy and speed of decision-making.

Third, the model is not merely theoretical:
it is implemented as a computational process
compatible  with  existing  monitoring
infrastructures, enabling both fully
autonomous and hybrid “human-in-the-loop”
operation, where parameters adapt to expert
strategies without requiring code
reconfiguration.

A distinguishing feature of the proposed
model is its mathematically rigorous yet
flexible formulation: the dynamic criticality
function x(o, t) combines normalized and
interpretable components, while minimization
of the attention functional L ensures selection
compactness without arbitrary thresholds. The
model does not require labeled attack data — it
operates unsupervised, grounded in general
principles of change, dependency, and
surprise, rendering it applicable even under
unknown (zero-day) threats. A practical
implementation, tested on a simulated
cyberattack scenario, demonstrated that the
methodology reduces detection time (by tens
of percent in this case) while simultaneously
decreasing analysts’ cognitive load and
mitigating attention drift — the root cause
behind many “missed” incidents.

The model’s applicability extends beyond
cybersecurity. It can be adapted for monitoring
critical infrastructure during natural disasters
(e.g., dynamically shifting attention from
power grids to mobile communication hubs
during large-scale outages); to support
decision-making in healthcare  (e.g.,
prioritizing hospitals, laboratories, or supply
chains during epidemics); in civil protection
systems (e.g., resource allocation during
evacuations, where critical elements are not
fixed facilities but routes, information centers,
or mobile response units); and in digital
governance — for analyzing draft legislation,
where critical elements may not be individual
code articles but the inter-article links,
terminological shifts, or unforeseen legal
consequences. Since the model focuses on the
attention process rather than any particular
domain, it lays the groundwork for unifying

83

crisis  management
interdisciplinary level.

approaches at an
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