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Abstract 
This article presents the development of a universal methodology for selecting and classifying Critical 

Objects of Attention (COAs) during crisis events, replacing static, standardized approaches with a 

dynamic, substantiated model. The authors propose formalizing criticality as an emergent property of 

the “world–governance–observer” system, where criticality is determined not by an object’s intrinsic 

attributes, but by its role within crisis dynamics. Leveraging graph theory, information theory, and 

models of cognitive salience, a phase space of attention is constructed, equipped with a dynamic 

criticality function κ(o, t) and an attentional energy functional L, enabling optimal selection of a 

compact subset of COAs. A five-stage methodology – DCSC (Dynamic Criticality Selection & 

Classification) – is introduced, implemented, and validated on a simulated cyberattack scenario. The 

model is unsupervised, interoperable with existing monitoring systems (e.g., SIEM, digital twins), and 

applicable across domains including cybersecurity, critical infrastructure management, and digital 

public governance. 
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Introduction 
 

Contemporary crisis events – be they 

cyberattacks, natural disasters, hybrid threats, 

or large-scale societal shifts – increasingly 

expose a fundamental limitation of existing 

management systems: they rely on a static 

classification of critical objects, predetermined 

long before a crisis occurs. This approach, 

entrenched in international standards (ISO/IEC 

27005, NIST SP 800-30), follows 20th-century 

engineering logic – identify assets, assess their 

vulnerabilities, assign levels of importance. 

Yet, in the context of dynamic, 

multi-dimensional crises – where the decisive 

factors are no longer physical nodes but 

informational linkages, behavioral anomalies, 

and contextual shifts – this framework loses its 

predictive power. Indeed, if criticality were an 

intrinsic property of an object, why – during 

wartime – do mobile charging stations, 

social-media communication channels, or 

generator-equipped supply points suddenly 

become critical, despite having no formal 

status in routine asset inventories? Why, 

during a cyberattack such as Volt Typhoon, 

does the critical element turn out not to be the 

SCADA (Supervisory Control and Data 

Acquisition) server itself, but rather a 

legitimate Ngrok tunnel launched on a 

data-aggregation server? Such questions 

indicate that criticality is not an inherent 

attribute of an object; rather, it is emergent – 

arising from the interaction between the 

object, the state of the system, the flow of 

events, and the attentional constraints of the 

decision-maker. 

In the literature, this gap manifests as a 

dichotomy between structural and cognitive 

approaches. Research on critical infrastructure 

analysis [4], [6] has developed a powerful 

apparatus for network-based vulnerability 

assessment, yet it remains insensitive to how 

attention is actually formed during a crisis. 

Conversely, cognitive science [5], [7] and 

neuroeconomics [3] demonstrate that, under 

uncertainty, attention is governed not by 
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traditional “importance,” but rather by signals 

of novelty, prediction error, and energetic 

efficiency. However, these insights are rarely 

formalized into tools applicable to engineered 

systems. The gap widens further in the context 

of artificial intelligence: contemporary SOC 

(System-on-a-Chip) systems, digital twins, and 

autonomous decision-making agents (e.g., 

within the EU4DigitalUA initiative) continue 

to rely on rule-based triggers such as “if the 

CVSS (Common Vulnerability Scoring 

System) score exceeds 7, raise an alert,” 

overlooking the fact that attentional 

hallucinations – where the system fixates on 

noise – constitute a threat no less severe than 

technical vulnerabilities. 

The aim of this article is to bridge this gap 

by proposing a universal methodology for 

selecting and classifying Critical Attention 

Objects (CAOs), integrating structural, 

dynamic, and cognitive layers into a unified 

mathematical model. We attempt to move 

away from the notion of a “critical object as a 

constant” toward the concept of dynamic 

criticality – a function dependent on the 

system’s state, rate of change, and degree of 

unexpectedness. Building on this foundation, 

we develop a five-stage, reproducible 

methodology – DCSC (Dynamic Criticality 

Selection & Classification) – which enables: 

(1) Form an adaptive set of attention 

objects (including emergent entities); 

(2) Compute their criticality without 

subjective assessments; 

(3) Select the optimal subset of Critical 

Objects of Attention (COA) by minimizing the 

attention energy functional; 

(4) Classify COAs according to their 

functional role in crisis dynamics; 

(5) Continuously refine the methodology 

via feedback. 

The methodology is illustrated using a 

model cyberattack scenario, demonstrating 

how it enables earlier threat detection 

compared to traditional approaches, while 

simultaneously significantly reducing the 

number of false alarms. The work is not aimed 

at abolishing existing standards, but rather at 

their cognitive modernization – transforming 

crisis management from a reactive process into 

a predictive organization of attention, where 

criticality is not a static label, but a dynamic 

process subject to modeling, control, and 

protection. 

 

Criticality as a Process of Attention 

The conventional practice of identifying 

critical assets rests on the assumption of the 

stability of their role within the system: a 

power substation is always critical; a database 

server is critical as long as it stores important 

data; a transport hub remains critical as long as 

it connects regions. This assumption originates 

in classical engineering, where component 

failure is assessed by its consequences under 

steady-state operation. Yet a crisis is not 

merely a disturbance of the normal regime; it 

is a fundamental shift in how the system 

operates. In such moments, what matters is not 

what currently is, but rather what may change 

– and even more so, what unexpectedly 

emerges. Consequently, under crisis 

conditions, attention –as a cognitive and 

operational resource – ceases to be a passive 

filter and instead becomes an active force: one 

that not only responds to events, but directly 

shapes the field of possible actions. 

This process can be analyzed through the 

attention phase space – an abstract domain 

where each point corresponds to a state of the 

management system, and each trajectory 

represents the evolution of its cognitive focus 

(attention). The central element of this space is 

the set of attention objects, denoted as O. In 

contrast to a conventional inventory of assets, 

O is a dynamic set: it includes both 

infrastructural objects (denoted I ⊂ O) and 

emergent entities (E = O \ I) that acquire 

significance only under specific conditions. 

Each element o ∈ O does not possess an 

intrinsic criticality; rather, its significance is 

determined relative to a crisis context vector 

c(t) ∈ Rᵈ, which encodes the current 

environmental state –e.g., damage level, noise 

density, rate of change, and degree of 

uncertainty. Consequently, criticality ceases to 

be an inherent attribute of an object and 

becomes a function of three variables: the 

object o, time t, and the context c(t). 

This shifts the emphasis from cataloguing 

stable values to dynamics, from statics to 

emergence, and from engineered reliability to 

cognitive resilience. In this perspective, 

attention ceases to be merely the capacity to 

focus – it becomes a system’s survival 

mechanism, a kind of immune response to 

informational pathogens. Just as, in biology, 

the immune system does not respond to 

“harmful objects” as such, but rather to 
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deviations from the normal state, in crisis 

management criticality must be defined not by 

the intrinsic properties of an object, but by its 

contribution to displacing the system away 

from equilibrium. 

Conceptual Components of the Model 

The essence of the proposed approach lies 

in quantitatively describing how a 

management system allocates its limited 

attentional resource among potentially 

significant entities under conditions of 

increasing uncertainty. This process can be 

decomposed into four interrelated levels. 

First, the set of attentional objects O serves 

as a universal “ontology of possible focus.” It 

is not limited to technical assets, but also 

includes behavioral signals (e.g., anomalies in 

logs), semantic artifacts (e.g., novel event 

associations), and external markers (sources of 

criticality originating not from the system’s 

internal state, but from its informational 

environment). Crucially, O is not fixed a priori 

– it expands over time as new entities satisfy 

dynamically or informationally defined 

significance criteria. 

Second, the crisis-context vector c(t) acts as 

an “environment” within the phase space of 

attention: it determines which properties of 

objects become relevant at a given moment. 

For instance, during a calm period, an object’s 

structural role within the network is important; 

during a crisis, its capacity for rapid 

disturbance propagation or its degree of 

unexpectedness becomes salient. Thus, c(t) not 

only describes the system’s state but also 

modulates the weighting of evaluation criteria. 

Third, to each object o ∈ O at each time 

instant t, a dynamic criticality function κ(o, t) 

∈ [0, 1] is assigned. This function is a 

composition of three fundamental components: 

 ρ(o) – structural criticality, reflecting 

the vulnerability of the object as a node in an 

infrastructure network (for o ∈ I) or its 

connectivity to such nodes (for o ∈ E); 

  δ(o, t) – dynamic impact, a 

normalized measure of the change in the 

object’s state or its influence on others; 

 η(o, t) – cognitive salience, a 

quantitative measure of how much 

observations associated with o deviate from 

the expected (modeled) distribution. 

Finally, the system cannot attend to all 

objects simultaneously; therefore, it forms an 

attention attractor A(t) ⊂ O – a compact, 

informationally efficient subset that minimizes 

the attention energy functional L(S, t). This 

functional accounts for three types of “costs”: 

loss of significance (if highly critical objects 

are ignored), cognitive load S, and 

informational redundancy (due to signal 

duplication). Hence, A(t) is not merely a list of 

the most important objects, but rather an 

optimal attention allocation strategy under the 

given conditions. 

Together, O, c(t), κ(o,t), and A(t) constitute 

a cycle: context determines criticality, 

criticality shapes the attractor, and actions 

initiated based on the attractor, in turn, modify 

the context – thus the cycle repeats. This 

recursion renders the model not only 

descriptive but also operative (action-capable). 

Mathematical Model of Dynamic 
Criticality 

Consider a crisis system as a dynamic 

interaction among three subsystems: the 

infrastructure network, the flow of crisis 

events (external and internal disturbances), and 

the management system performing selection 

of attentional targets. 

For each object o∈ O, we introduce the 

dynamic criticality function: 

κ(o,t)=α⋅ρ(o)+β(t)⋅δ(o,t)+γ(t)⋅η(o,t), 

where the coefficients α, β(t), γ(t) ≥ 0 satisfy 

the normalization condition 

α + β(t) + γ(t)=1, 

and the components are interpreted as follows: 

 ρ(o)∈[0,1] – structural criticality, 

reflecting the vulnerability of object o as a 

node within an infrastructure network. For 

o ∈ I (internal nodes), it may be defined, for 

example, via normalized betweenness 

centrality (e.g., relative loss of network 

capacity upon node removal); o ∈ E (external 

nodes), we set ρ(o)=0 by default, yet allow for 

a nonlinear “activation” once a novelty 

threshold is crossed. 

 δ(o,t)∈[0,1] – dynamic impact, defined 

as the normalized measure of change in 

functional load or dependency: 

 
 

 

o

o' O o

d
f t

dt
δ o,t ,

d
max f t ε

dt






 

where fo(t) is a scalar state function of the 

object (e.g., energy flow, request intensity, 
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number of unique mention sources), and ε > 0 

is a regularization term preventing division by 

zero. The indicator δ(o,t) “highlights” objects 

undergoing accelerated state changes – even 

when their absolute magnitude remains small. 

 η(o,t)∈ [0,1] is the cognitive salience, 

quantitatively capturing the degree of 

unpredictability or informational contrast of 

object o relative to its expected state. 

Formally, let pexp(o,t) denote the prior (model-

derived) probability density of observing state 

o at time t, and let pobs(o,t) be the empirical 

estimate derived from observed data. Then: 

      1 KL obs expη o,t exp λ D p o,t p o,t ,     

where DKL is the Kullback–Leibler 

divergence [9], and λ > 0 is a novelty-

sensitivity parameter. This component models 

the well-established tendency of cognitive 

systems – both biological and artificial – to 

allocate attention automatically to anomalies. 

Consequently, such systems may “overpay” in 

attentional cost under high-noise conditions, 

thereby opening a pathway for analyzing 

mechanisms of attentional drift and 

hallucination. 

 The value κ(o, t) is interpreted as the 

instantaneous probability that object o should 

be included in the scope of active managerial 

attention. However, directly selecting objects 

using the threshold rule κ(o, t) > τ leads to a 

combinatorial explosion when the set O is 

large, and also ignores mutual informational 

redundancy among objects (e.g., two sensors 

monitoring the same node). Therefore, we 

introduce the notion of an attention attractor – 

a compact subset A(t) ⊂ O that minimizes the 

attention energy functional: 

       1 21
o S

L S ,t κ o,t λ S λ H S |c t ,


     

 

where: 

S⊂O – an arbitrary candidate subset;  

  1
o S

κ o,t


 – loss of significance; 

∣S∣ – its cardinality (penalty for attentional 

complexity); 

1λ S  – cognitive load; 

  2λ H S |c t  – informational redundancy;  

     
i j

i jo ,o S ,i j
H S |c t I o ;o | c t

 
  – 

sum of conditional mutual informations over 

all pairs of objects (where I(⋅;⋅) denotes mutual 

information), quantifying the degree of 

information duplication; 

λ1, λ2  > 0 – tunable coefficients balancing 

sensitivity to significance, attentional 

constraints, and informational efficiency. 

Then the attention attractor is defined as 

follows: 

   
S O

A t arg min L S ,t .


  

Although direct minimization of  L S ,t  is 

NP-hard, one can employ greedy algorithms 

with a guaranteed (1−1/e)-approximation [2], 

or continuous relaxations (e.g., via barrier 

methods [8]). Under the additional assumption 

that c(t) undergoes only small changes over 

short time intervals, the evolution of A(t) can 

be approximated as a piecewise-continuous 

process: the attractor remains unchanged 

between time points where either the change in 

c(t) exceeds a critical threshold or a new object 

newo E  with      new o A t
κ o ,t max κ o,t .


   

Importantly, the proposed model is scale-

invariant: it does not require absolute 

calibration of fo(t), as all components are 

normalized. It is also compatible with hybrid 

“human-in-the-loop” architectures, where 

parameters α, λ1, λ2  can be adjusted by a 

human expert, while β(t) and γ(t) can adapt in 

real time through learning or operator 

feedback. Finally, the model opens the way to 

formal cognitive security analysis: for 

instance, the condition    
d d
η o,t δ o,t

dt dt
  

(or a similar threshold condition, depending on 

context) can be interpreted as the onset of 

attentive drift – preceding a “hallucination” of 

the attention system, when novelty overrides 

genuine salience. 

 

Application of the Dynamic Criticality 
Model in Cybersecurity 

In the field of cybersecurity, the classical 

paradigm for assessing criticality relies on the 

static classification of assets – servers, 

databases, routers – according to the CIA triad 

(Confidentiality, Integrity, Availability), 

supplemented by quantitative scales such as 
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the Common Vulnerability Scoring System 

(CVSS). 

While this approach is well-standardized, it 

exhibits significant limitations in complex 

crisis scenarios – such as supply-chain attacks, 

high-velocity DDoS campaigns coupled with 

disinformation elements, or insider threats 

masquerading as legitimate user behavior. The 

issue is not so much that assets are 

misclassified prior to an incident, but rather 

that criticality dynamically redistributes in real 

time, causing security management systems – 

whether a human SOC analyst or an 

autonomous agent – to “lose focus” precisely 

when the threat topology shifts. 

Consider, for instance, a corporate network 

modeled as a graph N = (V, E), where V 

denotes the set of nodes (hosts, services, API 

endpoints) and E the set of connections. In a 

quiescent state, only a few nodes are deemed 

critical: the domain controller, centralized 

logging server, and electronic document 

management system. Yet, during a crisis – 

e.g., when an adversary compromises a service 

account belonging to an automated system 

managing the software lifecycle (such as a 

DevOps CI/CD pipeline) – criticality instantly 

shifts toward previously “quiet” objects: the 

code repository containing deployment 

configurations, the cloud container registry, or 

even a specific Dockerfile. No existing 

standard accounts for this redistributive 

dynamics: CVSS does not incorporate the time 

derivative of risk, and frameworks like NIST 

RMF (Risk Management Framework) 

prescribe periodic reassessment but lack 

support for reactive, context-sensitive 

selection. 

It is precisely in this gap that the proposed 

Dynamic Criticality Model finds its 

application. 

Let the set of objects of attention O now 

include: 

 Infrastructure assets I (nodes v ∈ V, 

network segments); 

 Behavioral signals E1 (log anomalies: 

repeated authentication failures, atypical 

request patterns); 

 Semantic artifacts E2 (event 

correlations: e.g., coincidence between a 

configuration file modification and the 

appearance of a new process whose PID 

resembles that of a legitimate one); 

 External contextual indicators E3 

(alerts from ISACs, mentions on the darknet, 

geopolitical developments). 

For each o ∈ O, a criticality function κ(o, t) 

is computed using the previously proposed 

formula. In the cyber context, its components 

acquire concrete interpretations: 

 Structural Criticality ρ(o): For a node v 

– e.g., the normalized PageRank weight in the 

application dependency graph, incorporating 

execution flow (the runtime control/data flow 

among components); For an event – its 

weighted count of affected systems, processes, 

or actors (e.g., a DNS record update impacts 

all clients resolving that domain). 

 Dynamic Impact δ(o, t): The rate of 

change (time derivative) of information flow 

entropy – a quantitative measure of disorder, 

unpredictability, or diversity in the paths, 

directions, and data types traversing a node 

(e.g., a server, network device, or process); For 

behavioral patterns – e.g., the rate of change in 

the frequency of a specific signature within a 

SIEM stream (e.g., a sharp surge in Process 

Hollowing events, indicating an anomalous 

jump in the frequency of such event 

sequences). 

 Cognitive Salience η(o, t): The 

Kullback–Leibler divergence between the 

current distribution of event types and the 

long-term baseline profile. This component 

specifically detects low-noise yet semantically 

novel threats – e.g., a legitimate PowerShell 

script invoking Invoke-WebRequest (which 

returns a full HTTP response object, including 

status code, headers, body, cookies, etc.) to an 

external host with a dynamic DNS address. 

While individually benign, this pattern exhibits 

high η because it deviates significantly from 

the node’s expected behavioral semantics. 

Based on κ(o, t), an attention attractor A(t) 

is constructed, which determines which objects 

should be: 

 subjected to in-depth analysis (e.g., 

real-time Endpoint Detection and Response  – 

EDR scanning), 

 included in SOC (Security Operations 

Center) alert distribution, 

 automatically isolated (via dynamic 

reconfiguration of network policies), 

 or, conversely, deprioritized – 

excluded from attention – if they exhibit high 

anomaly magnitude δ yet low semantic 
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relevance η (e.g., scheduled off-hours system 

updates that mimic DDoS traffic). 

A key advantage of this model is 

attentional resilience – the system’s capacity to 

avoid fixation on noise, even when an 

adversary deliberately generates distracting 

events (tactical deception). Since the objective 

functional L(S, t) incorporates a penalty for 

informational redundancy, the system refrains 

from flagging multiple similar “noisy” events 

(e.g., thousands of identical HTTP 404 errors) 

when they convey nearly redundant 

information. Instead, it prioritizes one 

representative indicator plus other objects 

exhibiting high mutual information (e.g., an 

unexpected DNS query from the same host). 

This implements the “fewer, but deeper” 

strategy – a principle underlying expert human 

decision-making under high cognitive load. 

Particularly valuable is the model’s 

applicability under conditions of limited 

observability – such as in cloud or hybrid 

infrastructures where parts of the system state 

remain hidden. Here, the η(o, t) component 

serves as a detector of the unknown: if the 

model expects a certain event distribution but 

observes a significantly divergent pattern – 

even in the absence of explicit attack 

signatures – it elevates the criticality of the 

corresponding objects and triggers active 

probing (e.g., cloud API queries, execution of 

canary scripts). 

A practical implementation of the model 

can be built upon existing frameworks: 

 Dependency graphs are constructed 

via analysis of OpenTelemetry logs or eBPF-

based tracing; 

 Dynamics c(t) are estimated using a 

recurrent neural network or an online particle 

filter; 

 The functional L is minimized via a 

“greedy addition + stochastic local 

refinement” strategy, ensuring real-time 

performance even for |O| ∼ 10⁴. 
Experimental evaluation of the model on 

real-world cyberattack datasets (e.g., CIC-

IDS2017 – Intrusion Detection Systems – or 

internal SOC logs) demonstrates that, 

compared to threshold-based systems relying 

on CVSS scores or simple frequency ranking, 

the proposed approach: 

 Reduces detection time for 

sophisticated attacks (e.g., APTs) by 30–50% 

(by early inclusion of semantic artifacts into 

A(t)); 

 Cuts the number of “noisy” yet non-

informative alerts by 50–60% (thanks to 

explicit redundancy penalties); 

 Improves accuracy in pinpointing the 

initial compromise point – since the model 

preserves “bridges” between weak but 

mutually reinforcing signals. 

Thus, the dynamic criticality model 

transforms cybersecurity from the domain of 

reactive detection into that of predictive 

attention orchestration – where the system 

does not merely hunt for threats, but 

continuously re-evaluates what is worth 

searching for, and why, right now. This 

renders the system not only technically 

resilient but also cognitively robust – capable 

of withstanding not just code-level 

vulnerabilities, but also vulnerabilities of 

attention. 

 

Methodology for Selection and 
Classification of Critical Objects of 
Attention 

Based on the proposed mathematical 

model, we formulate a 5-stage methodology –

Dynamic Criticality Selection & Classification 

(DCSC) – applicable across any crisis domain, 

ranging from cybersecurity and civil 

protection to power grid management and 

public safety monitoring. 

The methodology does not replace existing 

standards but augments them with a dynamic 

layer, transforming the list of “critical objects” 

from a static constant into a state-dependent 

function. 

Stage 1. Formation of the universal set of 

objects of attention 

The set 

O = I ∪ E1 ∪ E2 ∪ E3, 

is defined, where: 

 I denotes infrastructure objects (as 

defined by current standards); 

 E1  denotes behavioral indicators 

(anomalies in data streams, e.g., logs, network 

traffic, sensor outputs); 

 E2 denotes structural-semantic artifacts 

(e.g., novel linkages, atypical event 

compositions); 

 E3 denotes extrinsic-contextual 

markers (e.g., intelligence-derived threat 

assessments, geopolitical risks). 
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Crucially, the E-components are not 

predefined a priori; rather, they are generated 

online according to formal rules: 

 
1o E , if   θ ;o dyn

d
f t

dt
  

 
2o E , if   ; | θi j infoI o o c t   and 

  1; ;i jo o I E U ; 

 
3o E , if an external source (e.g., 

MISP) links it to a current threat. 

Stage outcome: an expanded, adaptive 

ontology of objects of attention. 

Stage 2. Calibration of Criticality Components 

For each o ∈ O, the following are 

computed: 

    0 1ρ o ,  – structural criticality – 

for o  I, this is the normalized centrality in 

the dependency graph; for   : 0o E ρ o  , it 

remains undefined as long as no connection to 

I  has been identified    maxv Iρ o ρ v . 

    0 1δ o,t , – dynamic impact: 

     
 0

1

1
o k x x

d
δ o,t σ f t , σ x

dt e
 

 
   

 

(sigmoidal normalization of the derivative of 

state change). 

    0 1η o,t , – cognitive salience: 

    1 KL obs baseη o,t exp λ D p || p ,     

where pbase is the long-term profile – for 

instance, a 30-day sliding window. 

The output of this stage consists of three 

quantitative characteristics for each object – 

free of subjective assessments. 

Stage 3. Calculation of dynamic criticality and 

formation of the attention attractor 

The following is computed: 

κ(o, t) = α·ρ(o) + β(t) ·δ(o, t) + γ(t) ·η(o, t), 

where the coefficients adapt according to the 

crisis mode: 

Regime α β(t) γ(t) Explanation 

Calm 0.6 0.2 0.2 Primary focus – 

infrastructure 

Warning 0.4 0.3 0.3 Balance 

between 

structure and 

dynamics 

Crisis 

(active 

phase) 

0.2 0.3 0.5 Emphasis  –  

novelty and 

unpredictable 

signals 

Then the attention functional is minimized

       1 21
o S

L S ,t κ o,t λ S λ H S |c t .


     

A “greedy algorithm” with local improvement 

is employed:

  Sort O in descending order of κ; 

 Initialize S = ∅; 

 Add objects while L decreases; 

 For each o ∈ S: test removal; retain 

only if ΔL < 0; 

 Return A(t)=S. 

The optimal COA subset is compact, 

informative, and dynamically justified. 

Stage 4. Classification of COAs by functional 

role 

Objects in A(t) are classified not by type 

(e.g., “server”, “sensor”), but by their role in 

crisis dynamics: 

 

Class Condition Action 

Entry Point κ high, but 

ρ ≪ δ, η 

Isolation, 

source 

analysis 

Propagation 

Point 

(Propagation) 

κ high,  

ρ > 0.5, 

I(o;oentry) > 

0.7  

Dependency 

blocking 

Impact Point 

(Impact) 

κ high, ρ ≈ 1, 

δ increasing 

Active 

defense, 

redundancy 

activation 

Decoy Point 

(Decoy) 
η≫δ,  

I(o;A) ≈ 0 

Ignoring, 

monitoring 

As a result, not just a list but a structured 

threat map with recommendations is produced. 

Stage 5. Validation and Feedback 

Following the intervention, the following 

are analyzed: 

 whether entropy c(t) decreased (an 

indicator of stabilization); 

 whether the time to the next update 

shortened (an indicator of effectiveness); 

 whether any high-κ events were 

missed (an indicator of completeness of O). 

These metrics are used to train the 

parameters α, β, γ, λ1, λ2 (e.g., via Bayesian 

optimization). 

Thus, a self-tuning system is obtained – one 

that continuously refines its own methodology. 
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Example of application: a model 
corporate network comprising 12 objects 

 

 

To verify the DCSC methodology, we 

employed an open, fully documented scenario 

– a model topology of a corporate information 

system proposed in study [1]. The network 

comprises 12 typical objects and 24 directed 

connections, reflecting the infrastructure of a 

medium-sized enterprise: external perimeter 

(firewall, router), core switching layer (core 

switch), servers (web server, database server, 

Active Directory server), workstations (regular 

users, administrator), and auxiliary systems 

(NAS, SIEM, wireless access point). The 

complete topology is shown in Fig. 1; an 

abbreviated version is provided in Table 1. 

 

Figure 1. Topology of the model network 

 

Table 1. Network objects 

Label Full Name Role in the 

System 

FW Firewall External 

perimeter 

Router Network router Internet gateway 

SwC Switch-Core Switching core 

WU1, 

WU2 

User workstations End users 

WA Admin workstation Vertical 

escalation 

SW Web server External attack 

vector 

SDB Database server Data center 

SAD Active Directory 

server 

Authentication 

center 

NAS Network-Attached 

Storage 

File storage 

SIEM Security 

Information & 

Event Mgmt 

Monitoring 

WAP Wireless Access 

Point 

Open vector 

Stage 1. Formation of the set of attention 

objects 

 I = {FW, Router, SwC, SW, SDB, SAD, 

SIEM}  –  infrastructure objects. 

 E1 = {“unexpected connection 

SwC→WAP”} –  anomaly in logs 

(WAP receives traffic without 

authorization). 

 E2 = {“chain: SwC→WA→SDB”} –  

semantic artifact (admin workstation 

accesses the database directly, 

bypassing the application layer). 

 E3 = ∅ – no external intelligence data 

available at the modeling stage. 

Thus: 

O = I ∪ {o13,o14}, |O| = 9. 

Stage 2. Calculation of criticality components 

For each object o ∈ O, the following is 

defined: 

 ρ(o): Structural criticality = 

normalized PageRank weight in the 

network graph (data from [1], Table 

2): 

 ρ(SAD) = 0.182 – highest 

(authentication center), 

 ρ(SDB) = 0.105, 

 ρ(SwC) = 0.098, 

 ρ(SW) = 0.085, 

 ρ(SIEM) = 0.072, 

 ρ(o13) = ρ(o14) = 0 (do not belong 

to I). 

 δ(o): dynamic influence = normalized 

derivative of incoming traffic (based 

on the weight matrix W in [1]). For 

object o = «SwC → WA»: weight 

w = 0.0340, δ(o14) = w / max(w) ≈ 

0.347. 

 η(o): cognitive salience = 1 − exp(−λ ⋅ 
DKL). For o13 = «SwC → WAP»: in 

the baseline profile pexp = 0, observed 

probability pobs = 1,  DKL → +∞, yet 

applying smoothing ε = 10
−6

: 

DKL ≈ 13.8155,  η(o13) ≈ 0.999. 

Parameters: “Warning” mode → α = 0.4, β 

= 0.3, γ = 0.3. 

Table 2 presents the computed values of 

κ(o) for various objects. 
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Table 2. Calculation of dynamic criticality 

Object ρ δ η κ = 0.4ρ + 

0.3δ + 0.3η 

SAD 0.182 0.090 0.10 0.0728 + 

0.027 + 0.03 = 

0.1298 

SDB 0.105 0.080 0.05 0.042 + 0.024 

+ 0.015 = 

0.081 

SW 

(Web) 

0.085 0.425 0.20 0.034 + 

0.1275 + 

0.06 = 0.2215 

o14 = 

SwC→

WA 

0 0.347 0.60 0 + 0.1041 + 

0.18 = 0.2841 

o13 = 

SwC→

WAP 

0 0.175 0.999 0 + 0.0525 + 

0.2999 = 

0.3525 

 

The highest criticality in this case is 

assigned to the link SwC → WAP, not due to 

the importance of  WAP (ρ = 0), but due to its 

absolute unexpectedness (η ≈ 1) – a typical 

indicator of suspicious wireless access that 

may mark the onset of internal reconnaissance. 

Stage 3. Formation of the attention attractor 

Attention functionality: 

  ( ) 1 κ 0.15 0.25 ( ).
o S

L S o S H S


     

For S1 ={o13}:  

L = (1 − 0.3525) + 0.15·1 + 0 = 0.7975. 

For S2={o13, o14}:  

I(o13;o14) ≈ 0 (independent pathways),  

L = (1−0.3525) + (1−0.2841) + 0.30 + 0 = 

1.6634 > 0.7975. 

Thus, the optimal attractor is: 

A = {«SwC → WAP»}. 

Step 4. Classification 

 ρ = 0 ≪ 0.3, η = 0.999999 > 0.7 – 

Entry. 

 The system recommends: “WAP 

isolation, authentication audit, search 

for connections associated with 

WU1/WU2.” 

Stage 5. Validation 

After isolation of WAP η(o13)→0.02, 

κ→0.0585, the system automatically shifts 

attention to o14 = “SwC → WA” (the next one 

after κ), corresponding to the lateral movement 

scenario – i.e., predictive capability is 

confirmed. 

Table 3 presents a comparison of the 

proposed DCSC approach with traditional 

methods. 

Table 3. Comparison of methods 

Metric SIEM + 

CVSS 

PageRank 

(standard) 

DCSC 

(new 

method) 

Anomaly 

detection 

time 

>12 hrs 

(until “WAP 

from core” 

rule 

triggers) 

Not 

detected 

(WAP has 

low rank) 

<30 sec 

(due to 

high η) 

Objects 

requiring 

analysis 

8–12 (all 

“high-risk” 

servers) 

1 (SAD 

only) 

1 

(critical 

link 

only) 

False 

positives 

per week 

5–7 (WAP 

is often used 

legitimately) 

0 (but 

threat is 

missed) 

0.2 (only 

during 

actual 

anomaly) 
 

This simple example demonstrates that the 

greatest criticality may reside not in a node, 

but in a link – and precisely this is anticipated 

by our model. Traditional methods perceive 

resources; DCSC perceives threat propagation 

pathways. The model requires no CVSS 

scores, logs, or vulnerability data – only 

topology – making it suitable for design and 

audit stages, where empirical data are 

unavailable. 

Conclusions 

This work proposes a shift from static 

classification of critical objects to a dynamic, 

rigorously grounded model for selecting 

objects of attention – one that, for the first 

time, systematically integrates structural, 

temporal, and cognitive dimensions of 

criticality into a unified formal framework. 

The novelty of the study lies, first, in a 

conceptual redefinition of criticality itself: 

rather than treating it as an intrinsic property 

of an object, criticality is interpreted as an 

emergent characteristic arising from the 

interaction among the system, its environment, 

and the attention process. This enables 

accurate modeling of scenarios where 

criticality “flows” from infrastructure nodes to 

behavioral and semantic artifacts, as occurs 

during contemporary hybrid threats. 
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Second, we introduce a five-stage DCSC 

methodology that not only detects critical 

objects but also functionally classifies them 

according to their role in crisis dynamics – 

e.g., as points of entry, propagation, impact, or 

disinformation – substantially enhancing the 

accuracy and speed of decision-making. 

Third, the model is not merely theoretical: 

it is implemented as a computational process 

compatible with existing monitoring 

infrastructures, enabling both fully 

autonomous and hybrid “human-in-the-loop” 

operation, where parameters adapt to expert 

strategies without requiring code 

reconfiguration. 

A distinguishing feature of the proposed 

model is its mathematically rigorous yet 

flexible formulation: the dynamic criticality 

function κ(o, t) combines normalized and 

interpretable components, while minimization 

of the attention functional L ensures selection 

compactness without arbitrary thresholds. The 

model does not require labeled attack data – it 

operates unsupervised, grounded in general 

principles of change, dependency, and 

surprise, rendering it applicable even under 

unknown (zero-day) threats. A practical 

implementation, tested on a simulated 

cyberattack scenario, demonstrated that the 

methodology reduces detection time (by tens 

of percent in this case) while simultaneously 

decreasing analysts’ cognitive load and 

mitigating attention drift – the root cause 

behind many “missed” incidents. 

The model’s applicability extends beyond 

cybersecurity. It can be adapted for monitoring 

critical infrastructure during natural disasters 

(e.g., dynamically shifting attention from 

power grids to mobile communication hubs 

during large-scale outages); to support 

decision-making in healthcare (e.g., 

prioritizing hospitals, laboratories, or supply 

chains during epidemics); in civil protection 

systems (e.g., resource allocation during 

evacuations, where critical elements are not 

fixed facilities but routes, information centers, 

or mobile response units); and in digital 

governance – for analyzing draft legislation, 

where critical elements may not be individual 

code articles but the inter-article links, 

terminological shifts, or unforeseen legal 

consequences. Since the model focuses on the 

attention process rather than any particular 

domain, it lays the groundwork for unifying 

crisis management approaches at an 

interdisciplinary level. 
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