
1

Resilient Artificial Intelligence Architecture

Dmitry Lande
1
, Leonard Strashnoy

 2

1

ORCID: 0000-0003-3945-1178

National Technical University of Ukraine – Igor Sikorsky Kyiv Polytechnic Institute
2

ORCID: 0009-0008-5575-0286

University of California, Los Angeles (UCLA)

Abstract Modern Large Language Models (LLMs) have revolutionized AI, yet they suffer from

significant drawbacks: exorbitant energy consumption, centralized infrastructure vulnerabilities, and

escalating computational costs with task complexity. This paper presents a resilient AI architecture based

on a distributed swarm of Small Language Models (SLMs) as a compelling alternative. By decomposing

complex tasks into subtasks handled by specialized SLMs, we achieve decentralized computation,

enhanced energy efficiency, and superior survivability. Mathematical formalization demonstrates that

SLMs exhibit linear cost growth, drastically lower than the exponential increase in LLM costs. Our

analysis, supported by practical examples and comparisons to centralized systems like OpenAI, Microsoft

Azure, reveals that SLM networks offer substantial advantages in reliability, scalability, and cost-

effectiveness. Key findings include the inherent resilience of distributed SLMs to individual failures and

their ability to dynamically adjust resources in response to changing demands. This study concludes that

for the majority of practical applications, a distributed swarm of SLMs provides a more sustainable,

robust, and economically viable solution, marking a significant shift from monolithic LLM architectures

to a more adaptive and efficient paradigm for AI system design. This approach ensures resilience by

decentralizing computational resources, enabling collective intelligence, and enhancing adaptability and

survivability, ultimately concluding that a network of SLMs offers a more economical, scalable, and

resilient solution than a single LLM.

Keywords: resilient AI, distributed intelligence, small language models, decentralized computing, energy

efficiency, adaptability, cybersecurity, survivability.

Introduction

Large Language Models (LLMs) have

undoubtedly achieved groundbreaking results in

a variety of complex AI tasks, including natural

language processing, code generation, and

intricate reasoning. However, their impressive

capabilities come at a steep price. These models

are fundamentally dependent on massive

computational resources, leading to several

critical issues that threaten their sustainability

and reliability. Firstly, the sheer scale of LLMs

translates into exorbitant energy consumption,

contributing significantly to carbon footprints

and operational costs. Secondly, their

centralized nature makes them vulnerable to

single points of failure; if the central server or

data center goes down, the entire system fails.

Thirdly, the risk of catastrophic failure due to

software glitches, cyberattacks, or hardware

malfunctions is a constant concern. To address

these significant challenges and build more

robust AI systems, a shift towards a distributed

paradigm is essential. Specifically, we propose a

transition to a distributed system of Small

Language Models (SLMs). This transition,

however, is not straightforward and hinges on

the successful implementation of effective

strategies for task decomposition – breaking

down complex problems into manageable

subtasks – and result aggregation – combining

the outputs of individual SLMs into a coherent

whole. Only with these well-designed

mechanisms in place can we ensure both

computational efficiency and system-wide

resilience, making the distributed SLM approach

a viable and superior alternative to monolithic

LLMs.

The objective of this work is to propose a

resilient AI framework based on a distributed of

SLMs, focusing on the mechanisms of task

decomposition, distributed computation, and

result aggregation. We also analyze the

survivability of such systems under adverse

conditions. Tasks:

2

1. Describe the concept of transitioning

from LLMs to SLMs using task

decomposition and result aggregation.

2. Develop a mathematical model for task

decomposition and aggregation in a

distributed system.

3. Compare the proposed approach with

traditional LLM-based systems.

4. Highlight the role of resilience in

maintaining system functionality during

adverse events.

5. Provide practical examples with detailed

mathematical analysis.

Recent studies have explored various aspects

relevant to our research:

 Research on LLMs [highlights their

capabilities but also discusses the

challenges of resource centralization and

energy consumption. In work [1], the article

addresses the issue of reducing energy

consumption in data centers running LLMs.

A data center model is proposed that

utilizes a cost-based scheduling framework

for dynamically allocating LLM tasks

across hardware accelerators with different

levels of energy efficiency and

computational power.

 Studies on SLMs focus on their efficiency

and specialization but lack comprehensive

frameworks for integrating them into

distributed systems. The article [2]

examines the transition from classical

transformers to alternative architectures,

such as state space models (SSM), which

provide better scalability and efficiency, the

growing role of smaller models (SLM),

their democratization, and adaptation to

specific industries.

 Works on decentralized AI [3] emphasize

the benefits of distributing computational

resources but often overlook the specifics

of task decomposition and result

aggregation. This study proposes an

energy-efficient task distribution

mechanism for blockchain Proof of

Authority (POA) consensus, utilizing the

Dynamic Voltage and Frequency Scaling

(DVFS) technique to optimize energy

consumption and performance in the Cloud

Industrial Internet of Things (CIIoT). It

ensures the allocation of computing

resources through artificial intelligence and

neural networks, with simulation results

demonstrating reduced energy consumption

and improved efficiency compared to

traditional methods.

 Applications of distributed intelligence in

robotics [4] provide insights into collective

problem-solving, which can be adapted to

AI systems. Distributed intelligence is a

powerful approach to solving optimization

and decision-making problems. This review

examines its principles, algorithms,

applications in various fields, performance

evaluation, scalability, robustness, and

interpretability.

 Techniques for decomposing complex tasks

into simpler subtasks are well-documented

in operations research, offering a

foundation for applying similar principles

to AI systems. The article [5] examines the

use of large language models for

automating cyber investigations and digital

forensics, emphasizing the importance of

transparency and data security, proposing

local processing with smaller models that

can be enhanced through cognitive

augmentation, demonstrating significant

improvements and opening prospects for

further research.

Despite these advancements, there is a need for

a unified framework that integrates all these

elements into a resilient AI system.

Concept of Resilient AI Using a

Geographically Distributed Swarm

of Small Language Models

A resilient AI system consists of numerous

specialized SLMs working collaboratively to

solve complex problems. Each SLM operates

locally, consuming minimal resources while

focusing on specific tasks. By leveraging

distributed intelligence, the system achieves:

 Decentralization: Reduces reliance on

centralized resources, mitigating risks

associated with single points of failure.

 Energy Efficiency: Distributes

computational loads, minimizing energy

consumption per task.

 Survivability: Ensures continued operation

even if some components fail, thanks to

redundancy and collective problem-solving.

To transition from LLMs to SLMs, complex

tasks must be decomposed into smaller subtasks,

each of which can be handled by a specialized

SLM. This process involves:

1. Identifying the key components of the

task.

2. Assigning each component to an

appropriate SLM based on its expertise.

3

3. Ensuring efficient communication

between SLMs for result aggregation.

Distributed Swarm Architecture:

Each node in the swarm specializes in a subset

of tasks, communicating with others to form a

cohesive whole. This design mirrors biological

swarms, where simple agents collectively

exhibit sophisticated behaviors.

Once the subtasks are processed by individual

SLMs, their results must be aggregated to form a

coherent solution. This can be done using

techniques such as weighted averaging, voting,

or hierarchical combination, depending on the

nature of the task.

Task Decomposition as a Bi-

Criteria Optimization Problem

Let T be a complex task decomposed into

mmm subtasks
1 2
, ,..., .

m
T T T Each subtask

k
T is

assigned to a small language model
i

M based

on its parameters:

ik

C — compatibility score between

i
SLM and subtask k , measuring how

well the given SLM can handle the

subtask.

i

T — processing time of
i

SLM ,

representing the computational delay

before producing a result.

i

E — energy consumption of
i

SLM ,

indicating the power required to execute

the subtask.

The optimization problem aims to minimize

both total energy consumption and total

processing time:

1 1

1 1

min

min

n m

ik i

i k

n m

ik i

i k

x E

x T

Subject to constraints:

1

1 1

1 1

0 1

min

, ,...,

,

n

ik

i

n m

ik ik

i k

ik

x k m

x C P

x

Explanation of constraints:

1. The first constraint ensures that each

subtask is assigned to exactly one SLM.

2. The second constraint guarantees that the

overall accuracy of task execution meets

or exceeds the required threshold
minP .

minP represents the minimum required

accuracy for completing the full task.

 It is computed as a function of subtask

completion quality, where
ik

C values

indicate how well each SLM performs

a given subtask.

 For example, in a classification task,

minP may refer to an accuracy

percentage (e.g., 90% classification

accuracy). In a text generation task, it

may represent the semantic similarity

between generated and expected

outputs.

3. The binary constraint ensures that a

subtask is either assigned to an SLM

 1ik
x or not assigned (0

ik
x).

This bi-criteria optimization formulation ensures

that subtasks are distributed among models in a

way that minimizes both energy consumption

and processing time while maintaining the

required accuracy level.

Result Aggregation

After processing, the outputs from each SLM are

combined using a weighted aggregation

function:

1

,
n

i i

i

R w r

where:

i

r — result produced by SLM
i

M .

i

w — weight assigned to SLM
i

M ,

which is determined based on multiple

factors such as accuracy
i

P and

relevance
i

R .

4

The weight assignment follows a normalization

criterion:

1

,
,

,

i i

i n

j j

j

f P R
w

f P R

where ,
i i

f P R is a weighting function that

balances the impact of accuracy
i

P and

relevance
i

R in determining the final aggregated

result.

Interpretation:

1. The function ,
i i

f P R can take different

forms depending on the task.

 For classification problems, it may be

a function of confidence scores or

precision-recall measures.

 For text generation tasks, it could

incorporate measures such as semantic

similarity or fluency scores.

2. The normalization ensures that the

weights sum to 1, preventing any single

SLM from dominating the final result.

3. This approach guarantees that models

with higher accuracy and relevance

contribute more to the final outcome,

ensuring robustness in aggregated

predictions.

Centralized systems, such as those hosted on

Microsoft Azure, rely heavily on a single point

of failure. In contrast, a swarm of SLMs

distributes computation geographically, reducing

the risk of systemic failure. For example,

consider a disaster scenario where a regional

data center hosting an LLM is compromised. A

swarm of SLMs deployed globally can continue

functioning, ensuring uninterrupted service.

Comparison of the Efficiency of LLM and

SLM Networks

With the advancement of artificial

intelligence and machine learning

technologies, the question arises: is it more

effective to use one large universal model to

solve all tasks, or is it better to build a

network of small specialized models, each

optimized for a specific task? It is known

that large models, such as universal

transformers, possess significant

computational power; however, their energy

efficiency and economic feasibility may be

considerably worse compared to a network

of small models. In this section, we will

analyze why a network of SLM is more

energy-efficient, reliable, and cost-effective

compared to a LLM.

Formulation of Costs and Energy

Efficiency

To gain a clearer understanding of the

computational costs and energy

consumption in large models and networks

of small models, let us introduce several

mathematical notations:

 Computation costs for a

LLM: denoted as
LLM

C . These are the

costs associated with executing a task

using a large, general-purpose model

that must handle a wide range of tasks,

including processing input data,

solving specific subproblems, and

generating the final result.

 Computation costs for a network of

SLM: denoted as
SLM

C , which

represents the sum of costs for each

small, specialized model
k

SLM . Each

of these models is optimized to solve a

specific subproblem within the overall

task, allowing computational resources

to be distributed across different

models.

Mathematically, this can be written as

follows:

For the large model:

 ,LLM LLM
C f n

where n is the number of subtasks or the

complexity of the task, and LLM
f n is a

function describing the computational costs,

which increase nonlinearly with the growth

of complexity.

For the network of small models:

1

,
k

n

SLM SLM

k

C C

where m is the number of small models,

and
kSLM

C is the computational cost for each

individual model.

5

Proof of Cost Inequality

Let's compare the computational costs for a

large model and a network of small models.

The total computational cost for a large

model can be expressed as:

1

.
k

m

SLM SLM SLM

k

C C C

The proof of this comparison is based on the

following factors:

 Specialization of small models: Each

small model specializes in performing

a single specific task. This allows for

optimization of computational costs

for each model, as it operates only on

a limited set of data and operations,

reducing computational complexity.

 Scalability and distributed computing:

When using a network of small

models, tasks can be distributed

among the models, which lowers

overall computational costs.

Additionally, each small model can

operate independently of others,

reducing the overall system load.

 Increasing costs for large models:

Since a large model must handle all

types of tasks, computational costs

increase non-linearly with the

complexity of the task. This is because

the large model must utilize more

parameters and more complex

algorithms for each new task.

For these reasons, the computational costs

for a large model will always be greater than

or equal to the costs for a network of small

models.

Examples of Result Aggregation in

SLMs

1. Sentiment Classification

Task: Determine the overall sentiment of a text

based on analysis from multiple SLMs.

Aggregation Function f : Weighted Average

1

,
n

i i

i

R w r

where:

i

r is the sentiment score from model

i
SLM (-1 for negative, 0 for neutral,

+1 for positive);

i

w is the weight of each SLM,

proportional to its accuracy
i

P .

Example Calculation:

Suppose three SLMs provide the following

sentiment scores:

1 1

1:SLM r , weight
1

0 5. ;w

2 2

1:SLM r , weight
2

0 3. ;w

3 3

1:SLM r , weight
3

0 2. .w

The final sentiment score is calculated as

follows:

 0 5 1 0 3 1 0 2 1

0 5 0 3 0 2 0 4

. . .

.

R

Since 0R , the overall sentiment is classified
as positive.

2. Machine Translation

Task: Select the best translation of a

sentence among results from multiple

SLMs.

Aggregation Function f : Maximum Weight

Selection

 argmax ,
i

R r w

where:

i

r is the translation provided by
i

SLM ;

i

w is the quality score of the translation

(e.g., BLEU score or semantic similarity).

Example Calculation:

Suppose three SLMs provide the following

translations:

1

SLM : "The weather is great today."

 1
0 85.w ;

2

SLM : "Today, the weather is

wonderful." (
2

0 92.w);

3

SLM : "It's a nice day outside."

 3
0 78.w .

6

Since
2

SLM has the highest weight

 2
0 92.w , its translation is selected:

2
R r "Today, the weather is wonderful."

3. Anomaly Detection

Task: Determine the overall anomaly score for a

dataset.

Aggregation Function f : Weighted Average

1

,
n

i i

i

R w r

where:

i

r is the anomaly score detected by
i

SLM

(ranging from 0 to 1, where 1 represents a

severe anomaly);

i

w is the weight of each model (based on

its accuracy
i

P).

Example Calculation:

Suppose three SLMs produce the following

anomaly scores:

1 1

0 9: .SLM r , weight
1

0 4. ;w

2 2

0 2: .SLM r , weight
2

0 3. ;w

3 3

0 7: .SLM r , weight
3

0 3. .w

The final anomaly score is computed as follows:

 0 4 0 9 0 3 0 2 0 3 0 7 0 63.R

If the anomaly threshold is set at 0.6, the system

triggers an anomaly alert.

For classification tasks (e.g., sentiment analysis,

anomaly detection), weighted averaging is an

effective aggregation method. For selection-

based tasks (e.g., machine translation, image

recognition), choosing the best option based on

weight is more suitable. Hybrid approaches can

be used in cases requiring both ranking and

averaging.

Technical Challenges and Solutions

1. Synchronization Between Models

Challenge:

In distributed systems, ensuring that the results

from different SLMs are synchronized and

consistent is critical. Without proper

synchronization, the aggregated results may be

inconsistent or erroneous, especially when tasks

require combining outputs from multiple

models.

Solutions:

Weighted Aggregation: Use weighted

averaging or voting mechanisms to combine

results from different SLMs. Each model's

output is assigned a weight based on its accuracy

or relevance.

1

,
n

i i

i

R w r

where
i

w is the weight of the i-th SLM,

and
i

r is its result.

Timestamping: Implement timestamping to

order the results from different SLMs, ensuring

that the most recent or relevant data is used in

aggregation.

Consensus Algorithms: Use consensus

algorithms (e.g., Paxos or Raft) to ensure that all

SLMs agree on the final result, especially in

cases where multiple models contribute to the

same task.

2. Managing a Large Number of SLMs

Challenge:

Managing hundreds or thousands of SLMs in a

distributed network can be complex. Efficiently

distributing tasks, avoiding overloading

individual nodes, and ensuring balanced

resource utilization are key challenges.

Solutions:

Load Balancing: Implement load-balancing

algorithms (e.g., round-robin, least connections,

or priority-based scheduling) to distribute tasks

evenly across SLMs.

1

,
n

ik ik i

i

C x B

where
ik

C is the computational cost of task
k

T

on
i

SLM and
i

B is the capacity of
i

SLM .

Dynamic Task Scheduling: Use dynamic

scheduling algorithms that can adapt to the

current load and availability of SLMs in real-

time.

Task Queues: Implement task queues to

manage incoming tasks and assign them to

available SLMs based on their current workload

and specialization.

3. Communication Overhead

Challenge:

In distributed systems, communication between

7

SLMs can introduce significant overhead,

especially if the network is large or

geographically dispersed. High latency or

bandwidth limitations can slow down the

system.

Solutions:

Edge Computing: Perform computations

locally on edge devices to minimize the need for

data transmission over long distances.

Data Compression: Compress data before

transmission to reduce bandwidth usage and

improve communication efficiency.

Routing Optimization: Use optimized routing

algorithms to minimize communication delays

and ensure efficient data transfer between

SLMs.

1 1

,
m m

comm ij ij

i j

C d v

where
ij

d is the distance between
i

SLM and

j
SLM , and

ij
v is the volume of data

transmitted.

4. Fault Tolerance

Challenge:

In a distributed network, the failure of one or

more SLMs can disrupt the system's

functionality. Ensuring that the system remains

operational despite individual node failures is

crucial.

Solutions:

Redundancy: Duplicate critical tasks across

multiple SLMs to ensure that if one fails, others

can take over.

Recovery Mechanisms: Implement automatic

recovery mechanisms that can redistribute tasks

from failed SLMs to healthy ones.

Failure Detection: Use heartbeat mechanisms

or monitoring tools to detect failures in real-time

and trigger recovery processes.

1 ,m

survive
P p

where p is the probability of a single SLM

failing, and m is the number of SLMs in the

network.

5. Scalability

Challenge:

As the number of SLMs grows, the system must

scale efficiently without compromising

performance or increasing complexity.

Solutions:

Modular Architecture: Design the system with a

modular architecture, allowing new SLMs to be

added or removed without disrupting the entire

network.

Decentralized Control: Use decentralized control

mechanisms to avoid bottlenecks and ensure that

the system can scale horizontally.

Resource Allocation Algorithms: Implement

algorithms that dynamically allocate resources

based on the current demand and availability of

SLMs.

6. Security and Privacy

Challenge:

Distributed systems are more vulnerable to

security threats, such as data breaches or

unauthorized access. Ensuring data privacy and

security is a major concern.

Solutions:

Encryption: Encrypt data both in transit and at

rest to protect it from unauthorized access.

Access Control: Implement strict access control

mechanisms to ensure that only authorized

SLMs can access sensitive data.

Blockchain for Data Integrity: Use blockchain

technology to ensure data integrity and

traceability in distributed AI systems.

While the use of Small Language Models

(SLMs) in distributed AI systems offers

significant advantages in terms of resilience,

energy efficiency, and scalability, it also

introduces several technical challenges. These

challenges include synchronization between

models, managing a large number of SLMs,

communication overhead, fault tolerance,

scalability, and security. However, by

employing advanced algorithms, optimization

techniques, and robust system design principles,

these challenges can be effectively addressed.

This ensures that SLM-based systems remain

reliable, efficient, and adaptable for a wide

range of practical applications.

Future Perspectives:

1. Scalability, expanding the swarm to

global scales could enable real-time

robotics and other autonomous systems.

2. Integrating SLMs into autonomous

systems, such as smart cities or IoT

8

networks, would enhance their

independence and reliability.

3. Combining distributed SLMs with

traditional LLMs could balance flexibility

and performance, creating hybrid AI

systems suited for diverse applications.

Conclusions

The proposed framework for a resilient AI

system, structured around a distributed swarm of

Small Language Models, represents a

transformative shift in how we conceive and

deploy artificial intelligence. Moving beyond the

conventional reliance on monolithic Large

Language Models, this distributed approach

unlocks unprecedented levels of performance,

reliability, and adaptability. These enhancements

are particularly crucial in scenarios that demand

robustness, efficiency, and scalability, such as in

real-time autonomous systems, large-scale data

processing, and critical infrastructure

management.

A fundamental advantage of employing SLMs

lies in the strategic decentralization of

computational resources. Unlike LLMs, which

necessitate substantial and often cost-prohibitive

centralized infrastructure, and whose

computational demands escalate exponentially

with the complexity of the task, SLMs operate in

a distributed manner, markedly improving

processing efficiency and enabling seamless

scalability. This distributed architecture not only

leads to a significant reduction in energy

consumption per computational task but also

fosters an innate resilience against systemic

failures. In a scenario where individual models

experience failure, the system as a whole

remains operational, with other nodes

automatically compensating and ensuring

uninterrupted functionality. This resilience is a

critical differentiator, particularly in

environments where continuous operation is

paramount.

Our mathematical analysis unequivocally

demonstrates the economic and operational

benefits of SLMs. The computational and

energy costs associated with distributing tasks

across a swarm of specialized SLMs are

consistently and substantially lower than those

required by a single, large LLM. The linear

scaling of energy demands in SLM systems,

contrasted with the exponential scaling observed

in LLMs, positions the distributed SLM

framework as a far more sustainable and

economically viable solution for long-term AI

deployments. Moreover, the specialization of

individual SLMs for particular tasks further

optimizes resource utilization, translating into

tangible reductions in operational costs when

compared to the generalized approach of relying

on a single, all-encompassing LLM. For

example, deploying a specialized SLM for real-

time language translation in a customer service

setting would require significantly less

processing power and energy than routing all

translation requests through a large, general-

purpose LLM, illustrating the practical cost

savings.

Task decomposition and result aggregation are

integral to harnessing the full potential of SLM-

based systems. The strategy of breaking down

intricate tasks into smaller, more manageable

components, which can be processed

concurrently by specialized models,

dramatically reduces processing time and

enhances overall system flexibility. The

carefully managed aggregation of results from

these specialized models yields highly accurate

and nuanced outputs, a critical feature when

dealing with complex or highly variable tasks

where precision is paramount. In areas such as

medical diagnosis or financial forecasting, the

accuracy and reliability provided by the SLM

approach can be life-altering.

In comparison with traditional centralized

systems, exemplified by platforms such as

Microsoft Azure's cloud infrastructure, the SLM

network architecture exhibits enhanced

robustness and adaptability. By mitigating the

inherent risks linked to single points of failure

and providing dynamic resource adjustments to

match fluctuating demands, SLMs offer a more

reliable and efficient solution. The inherent

scalability and flexibility of the swarm-based

architecture guarantee that AI systems can adapt

seamlessly to changing operational conditions.

This adaptability ensures that AI deployments

are not only efficient but also prepared for future

growth and changing requirements.

In conclusion, the strategic shift from LLMs to

SLMs is not merely an incremental

improvement but a fundamental paradigm

change that addresses the core challenges of

modern AI systems. By prioritizing resilience,

scalability, and energy efficiency, the distributed

SLM model stands as a robust and sustainable

alternative. For the vast majority of practical

applications, especially those where reliability,

adaptability, and cost-effectiveness are critical

factors, a distributed swarm of SLMs offers a

9

compelling and superior alternative. Through the

thoughtful orchestration of specialized models,

decentralized computational resources, and

optimized task management, the SLM

framework effectively resolves many of the

constraints associated with LLMs. This

approach fosters the creation of more

sustainable, robust, and ultimately more

effective AI systems, driving innovation and

ensuring that AI technologies are accessible and

beneficial across a wider range of applications.

References

[1] Wilkins, G., Keshav, S., & Mortier, R.

(2024). Hybrid Heterogeneous Clusters Can

Lower the Energy Consumption of LLM

Inference Workloads. The 15th ACM

International Conference on Future and

Sustainable Energy Systems, 506–513.

https://doi.org/10.1145/3632775.3662830

[2] Kamath, U., Keenan, K., Somers, G. and

Sorenson, S., 2024. LLMs: Evolution and

New Frontiers. In Large Language Models:

A Deep Dive: Bridging Theory and

Practice (pp. 423-438). Cham: Springer

Nature Switzerland.

[3] Javadpour, A., Sangaiah, A.K., Zhang, W.,

Vidyarthi, A. and Ahmadi, H., 2024.

Decentralized AI-based task distribution on

blockchain for cloud industrial internet of

things. Journal of Grid Computing, 22(1),

p.33.

[4] Zangana, Hewa Majeed, Zina Bibo Sallow,

Mohammed Hazim Alkawaz, and Marwan

Omar. "Unveiling the collective wisdom: A

review of swarm intelligence in problem

solving and optimization." Inform: Jurnal

Ilmiah Bidang Teknologi Informasi dan

Komunikasi 9, no. 2 (2024): 101-110.

[5] Bergner, B., Skliar, A., Royer, A.,

Blankevoort, T., Asano, Y., & Bejnordi, B.

E. (2024). Think big, generate quick: Llm-

to-slm for fast autoregressive

decoding. arXiv preprint arXiv:2402.16844.

