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Introduction 

Now one can hardly argue against the 

fact that a new paradigm has been born, 

or in a more official language, a new 
scientific direction – the theory of complex 

networks. Let's look back at 30 years ago. 

Then, everyone who read, flipped through 

or at least looked at the pictures and 

captions to them in the book of 
B. Mandelbrot "The Fractal Geometry of 

Nature" discovered that everywhere you 

look – only fractals. And trees, and 

bushes, and profiles of mountains and 

clouds, and the trajectory of a Brownian 

particle familiar from school, etc. and so 
on. The term fractal has become 

fashionable, entered (sometimes “out of 

business”) into the terminology of articles 

and books on various fields of science – 

physics, chemistry, biology, economics, 
medicine,... And this despite the fact that 

the first fractal objects were studied 

already in the XIX century (Peano curve, 

Cantor set, etc.). Now interest in fractals 

has cooled down, the frequency of using 

the term fractal in books is falling. A new 
area that is actively developing is the so-

called "complex networks". Now, 

everywhere you look, you see networks – 

social networks, networks of friendship, 

co-authorship in scientific publications, 
sexual relations, business connections, 

publications in the media, sharing words 

in texts, metabolisms (metabolic 

processes), blood vessels, transport, finally, (see figure) Internet 

and WWW. Huge field of activity, many results, new sections in 

scientific journals and new journals. 

At the first acquaintance with books and reviews on the 

theory of complex networks, a question arises. Isn't this theory 

of complex networks just a fancy name? The economic 

 

 

Benoit Mandelbrot 
(1924 – 2010) 

Mandelbrot 
b. Fractal Geometry 
of Nature = The 
Fractal Geometry of 
Nature. – M.: 
Institute of 
Computer Science. 

research, 2002. – S. 
656. 

"Where do you 
work?" “I am a null 
physicist.” An 
astonished look. 
“Listen, tell me, 
please, what is null 
physics? I can't 

understand at all." – 
"Me too". A. and B. 

Strugatsky "Distant 
Rainbow". 
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component of the fashionable term is well known, he wrote 
"nanofilter" and received a mega-grant. What is the difference 

between a network, albeit a complex one, from a graph? And the 

theory of complex networks is derived from the theory of graphs, 

a theory that was initiated by Euler with his famous problem of 

the Königsberg bridges. 

 

 

Figure 1. The dynamics of the use of the phrase Complex 

Networks, obtained using the Google service Ngram Viewer 
(https://books.google.com/ngrams) 

Formally, any network is a graph. And, again, formally, 

the theory that studies the properties of complex networks 

should be called graph theory. We give the following 

counterexample. Classical mechanics studies, among other 

things, the motion of material points. An ideal gas is just 
moving material points. However, the properties of gas are 

studied by another branch of physics – statistical mechanics. 

She has her own methods, terms, techniques. And 

"ordinary" classical mechanics cannot cope with the task of 

describing gas, there are too many particles even in a small 
"piece" of gas. And Maxwell, Boltzmann, Gibbs and many others 

had to create a new science and introduce new concepts, for 

example, temperature and entropy, which are not needed and 

are not introduced in principle in classical mechanics. 
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The relationship between graph 
theories and complex networks is similar. 

As the basis of classical statistical 

physics is classical mechanics, so the 

basis of the theory of complex networks is 

the theory of graphs. At the same time, 
graph theory can receive meaningful 

statements, as a rule, for graphs 

(networks) of small size or special 

structure. Whereas the theory of complex 

networks deals with a large number of, as 

a rule, randomly connected nodes. In this 
regard, on the one hand, many common 

questions of graph theory are not of 

interest to the theory of complex 

networks. For example, such a question – 

is this graph planar? For a random graph 

with a large number of nodes and 
connections, the answer is obvious (and 

of no interest) – no. On the other hand, 

many very important concepts in the 

theory of complex networks for a graph 

with a small number of nodes and 
connections are either of no interest, or 

they are simply difficult to formulate 

meaningfully. For example, such an important characteristic in 

the theory of complex networks as the distribution function 

according to the degree of nodes can be calculated for any, incl. 

and a small number of nodes. However, due to its probabilistic 
content, this concept is useful only in the case of a large number 

of nodes and links. 

What is the theory of complex networks? Let's list some 

problems and tasks. 

First, by studying the standard characteristics of graphs 
for complex networks of various nature – random graphs, scale-

free networks, small-world networks, etc. 

Secondly, the definition and study of new characteristics of 

complex networks, such as, for example, the average minimum 

path, mediation, clustering coefficient. 

 
Dorogovtsev S.N., 
Mendes JFF Evolution 
of Networks: From 
Biological Networks 
to the Internet and 
WWW. – Oxford, USA: 

Oxford 
UniversityPress, 
2003. – P. 280.   

 

Mark Newman, Albert-

Laszlo Barabasi, 

Duncan J. Watts. The 

Structure and 

Dynamics of 

Networks: (Princeton 

Studies in 

Complexity). – 

Princeton, USA: 

Princeton 

UniversityPress, 

2006. – P. 624. 
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Thirdly, the study of various "physical" processes on 
complex networks – diffusion, epidemic processes, various flows 

(information, electric current, etc.) After all, the famous 

PageRank algorithm considers wandering through links 

(hyperlinks) in the complex web of the WWW. 

Fourthly, there is a direction that is very important from 
an applied point of view – methods of restoring, protecting and 

destroying networks. Such a question – how many nodes 

(connections) need to be "killed" in order to, for example, collapse 

a "giant cluster" or to significantly increase the minimum 

average path? That is, as the system administrators say, so that 

the "network is down." This is also related to the issues of 
network optimization. 

Fifth, the search for implicit connections, those that are 

artificially hidden. An important application of this task is the 

search for terrorist connections. And, of course, business 

intelligence. 

The methods that are used to solve 
these and many other problems can be 

conditionally divided into three types. 

Graph theory methods are largely 

combinatorial. Numerical modeling is 

now well developed, tested and adapted 
for the purposes of the researcher of 

complex networks. For example, a 

special package (python-networkx) has 

been developed for the Phyton 

programming language – a toolkit for creating, manipulating and 

studying complex networks, which makes it possible to 
numerically find almost all possible characteristics of complex 

networks. The third type of methods, which made it possible to 

establish the main patterns in complex networks, are the 

methods of theoretical physics. From mean field theory to 

renormalization group and diagram technique. No wonder a 
significant number of leading researchers of complex networks of 

physics are theorists. 

What is our book about and who is it intended for? It must 

be said right away that for those who are familiar with the main 

reviews or books on the theory of complex networks, our book is 

of no interest. It is intended, first of all, for those who have only 

 

Python-networkx 

package in Ubuntu 

(https:// 

launchpad.net/ubuntu/ 

+source/python-

networkx) 
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heard the term "complex network" or met with it in an article on 
biology, economics, etc. It is quite difficult for an interested 

reader to immediately master a large overview, terminology, 

methods, and main tasks. This is where this book should help. 

The first part describes, using simple examples, the main 

characteristics and properties of several of the most common 
networks. The second part of the book is intended for those 

readers who would like, as an example, to see "how" the theory 

of complex networks works. Here are a few tasks (problems) 

selected by the taste of the authors. 

The material of the book is the basis of a two-semester 

special course "Modeling of complex networks", which is read to 
students of the Institute of Applied System Analysis (IPSA) of the 

National Technical University of Ukraine "KPI". We express our 

gratitude to the rector of NTUU "KPI", the head of the 

Department of Mathematical Methods of System Analysis 

(MMSA), Academician M.Z. Zgurovsky, Dean of the Faculty of 

System Research of the IPSA, Professor V.D. Romanenko and 
Associate Professor of the Department of MMSA Yu.A. 

Timoshenko for the idea and support in creating this special 

course. 

And, finally, we express our sincere gratitude to our 

colleagues who supported the idea of writing this tutorial and 
are directly related to many of the results presented here: 

M.I. Zhenirovsky, I.V. Bezsudnov, A.G. Dodonov and 

S.M. Braichevsky. 
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Part I. Complex networks  

1. Basic concepts 

1.0. The direction of "complex networks" 

For a long time, such a riddle has been spread among the 

inhabitants of Koenigsberg: how to pass through all seven 
bridges (across the Pregolya River, Fig. 1.0.1) without passing 

through any of them twice. No one could prove or disprove the 

possibility of the existence of such a route. 

Figure. 1.0.1 – Scheme of the bridges of Koenigsberg 

Leonhard Euler 13 March 1736 in a 

letter to an Italian mathematician and 

engineer, Marioni wrote that he had 

found a rule, using which it is easy to 

determine whether it is possible to pass 

over all bridges without passing twice 
over any of them: 

 The number of odd vertices must 
be even (there is no graph that has 

an odd number of even vertices) 

 If all the vertices are even, then 
you can draw a graph without 

lifting your pencil from the paper. 

In this case, you can start at any vertex and end at the 
same vertex. 

 A graph with more than two odd vertices cannot be 
drawn in one stroke. 

 

 

 

 

 

 

Leonard Euler 
(1707-1783) 
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The Count of Königsberg Bridges has five odd vertices, that 
is, bridges cannot be bypassed without passing twice over some. 

PS: In 1905, on the orders of Kaiser Wilhelm, the Imperial 

Bridge was built, which was subsequently destroyed during the 

bombing during the Second World War. There are currently 

seven bridges in Kaliningrad, and the graph still has no Euler 
path. 

Despite the fact that the theory of complex networks 

includes various networks – electrical, transport, information, 

the greatest contribution to the development of this theory was 

made by the study of social networks. 

The term "social network" denotes 
the concentration of social objects, which 

can be considered as a network (or 

graph), the nodes of which are objects, 

and the links are social relations. The 

term was coined in 1954 by Manchester 

School sociologist J. Barnes  in "Classes and Assemblies in the 
Norwegian Island Parish". In the second half of the 20th century, 

the concept of "social network" became popular among Western 

researchers. In the theory of social networks, such a direction as 

the analysis of social networks (Social network Analysis, SNA). 

Today, the term "social network" denotes a concept that turned 
out to be wider than its social aspect, it includes, for example, 

many information networks, including WWW. 

In the theory of complex networks, there are three main 

areas: study of statistical properties that characterize the 

behavior of networks; creating a network model; predicting the 

behavior of networks when changing structural properties. 
Applied research usually uses such typical network analysis 

characteristics as network size, network density, degree of 

centrality, etc. 

In the analysis of complex networks, as in graph theory, 

parameters of individual nodes; network parameters in general; 
network substructures. 

Barnes, JA " Class 

and Committees in a 

Norwegian Island 

Parish," Human 

Relations 7:39-58. 
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The new paradigm – "complex 
networks" covers networks that have the 

following properties: 

1) big sizes; 

2) elements of randomness in the 

formation; 
3) growth (change) in time; 

4) some nodes can form compact 

groups – ensembles. 

1.1. Characteristics of complex 
networks 

1.1.1. Host settings 

For individual nodes, the following parameters are 

distinguished: 

- node input power is the number of graph edges that 

enter the node; 

- node output power is the number of graph edges that 

leave the node; 

- distance from one node to others; 

- eccentricity – the largest of the minimum distances 

from this node to others; 

- mediation (betweenness), showing how many shortest 

paths pass through a given node; 

- centrality – the total number of connections of a given 

node in relation to others. 

1.1.2. Node degree distribution 

Networks in general are characterized by such parameters 

as the number of nodes, the number of links, the distance 

between nodes, the average distance from one node to others, 

network density, the number of symmetric, transitive and cyclic 
triads, the diameter of the network – the largest distance 

between nodes in the network, etc.. 

There are several topical problems in the study of complex 

networks, among which the following main ones can be 

distinguished: 

 
Network density – the 
ratio of existing and 
possible connections: 

2
,

( 1)

L

n n
 


 

Where L
 
is the 

number of observed 

links, n is the number 

of nodes in the 

network. 
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 detection of clicks in the network. clicks – these are 
subgroups or clusters in which nodes are more strongly 
interconnected than with members of other cliques; 

 selection of components (parts of the network) that are 
not interconnected, the nodes of which are connected 

within these components; 

 finding blocks and jumpers. A node is called a jumper if, 
when it is removed, the network breaks up into 

unconnected parts; 

 selection of groupings – groups of equivalent nodes 
(which have the most similar link profiles). 

 Classification of networks by type can be done in various 

ways. Networks can be distinguished by what nodes and links 

are. 

For large (N >> 1) networks co 

random structure one one of the most 

important characteristics is the 

distribution function  P k over the 

powers of the nodes. Most real CNs are 

similar (close) to the following three : 

1. Random network or Erdős-Rényi  

(ER) network   ~
!

k

k k
P k e

k


. 

Thus, in the case of an ER network, the distribution 

function is a Poisson function. 

2. Network with exponential distribution   /
~

k k
P k e


. 

3. Network with power distribution (Scale – Free) 

   /P k k k     , where    is the Riemann zeta 

function. 

In double logarithmic scale these distributions have the 
form shown in Fig. 1.1.2. 

 

ER – Erdős-Rényi 

network, the so-called 
random graph 

 

SF – network scale 

free, scale-free 

network 
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A b V 

Figure. 1.1.2 – Distribution densities  P k in double logarithmic 

scale: a – Poisson distribution (network ER); b – exponential 

distribution; c – power distribution 

An Erdős-Rényi network can be constructed by randomly 

distributing M links between N nodes. Then, on the one hand 

2 / ,k M N , and on the other hand k mN , where m is the 

probability of connecting nodes. At N  and 0m  the knot 

degree distribution is Poisson. 

BA  networks, which are built using 

a special procedure, which consists in the 

fact that 
0N new nodes are gradually 

added to the initially small number of 

nodes, the links from which are more 

likely to be connected to those nodes that 

have links more. 

There are procedures for 
constructing networks of a different type, 

when random links are added to an 

ordered structure. The best-known 

example of such a network is the so-called 

Small World Network (SWN). 

 

1.1.3. Shortest path between 
nodes 

The distance between nodes is defined as the number of 

steps that must be taken to get from one node to another along 

 

 
 

Albert – Laszlo 
Barabashi 

 

 
 
 
 
 
Barabási AL, Albert 
R. Emergence of 

scaling in random 
networks. Science, 
1999. – Vol. 286 
(5439): 509–512. 
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existing edges. Naturally, nodes can be connected directly or 

indirectly through other nodes. 

The shortest path (SP, shortest path) 

between knots let's call minimum distance 

between them. For all networks Can enter 
the concept of the average shortest path, 

as the average over all pairs of nodes, the 

minimum distance between them: 

2
,

( 1)
ij

i j

l l
n n 



  

 
(1.1.1) 

where n is the number of nodes, ijl is the 

shortest distance between nodes, i and j . 

P. Erdős and A. Rényi showed that 
the average shortest path in a random 

graph grows slowly – as a logarithm of the 

number of nodes. 

The name of P. Erdős is associated 

not only with studies of complex networks, 
but also with the popular Erdős number, 

which is used as one of the criteria for 

determining the level of mathematicians in 

the corresponding society, based on the 

so-called network of co-authorship. It is 

known that Erdösz wrote about one and a half thousand 
articles, and also that the number of his co-authors exceeded 

500. Such a large number of co-authors gave rise to such a 

thing as the Erdös number, which is defined as follows: Erdős 

himself has this number equal to zero; for Erdős' co-authors, 

this number is equal to one; co-authors of people with an Erdős 

number equal to one have an Erdős number of two; etc. 

Thus, the Erdős number is the length of the path from 

some author to Erdős himself on joint works. It is a known fact 

that 90% of mathematicians have an Erdős number no higher 

than 8, which corresponds to the networks of "small worlds", 

which will be discussed below. 

 

 

Paul Erdős 
(1913-1996) 

 
Erdős, P., Renyi A. 

On Random Graphs. 
Publicationes 
Mathematicae, 1959. 
– No. 6. – pp. 290-
297. 

Erdős P., Rényi A. 
On the evolution of 
random graphs. 
Publ. Math. Inst. 
hungar. Acad. Sci., 
1960. – No. 5. – pp. 
17-61. – 1960. 
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Some networks may be disconnected, i.e. there are nodes, 
the distance between which is infinite. Accordingly, the average 

path may also be equal to infinity. To take into account such 
cases, we introduce the concept of the average inverse path E 

between nodes, calculated by the formula: 

2 1

( 1) i j ij

E
n n l



 . (1.1.2) 

Networks are also characterized by such a parameter as 

the diameter or the maximum shortest path, which is equal to 

the maximum value of all ijl . 

1.1.4. Clustering coefficient 

D. Watts and S. Strogatz  in 1998 defined such a network 

parameter as the clustering coefficient. This coefficient 

characterizes the tendency to form groups of interconnected 

nodes, the so-called cliques (Clique). For a particular node, the 

clustering coefficient indicates how many nearest neighbors of 
that node are also nearest neighbors to each other. 

k links coming out of the node that connect it to k other 

nodes, nearest neighbors. If we assume that all nearest 

neighbors are connected directly to each other, then the number 

of connections between them would be ( 1) / 2k k  . That is, this is 

a number that corresponds to the maximum possible number of 

links that could connect the nearest neighbors of the selected 
node. 

The ratio of the actual number of links that connect the 

nearest neighbors of a given node i
 
to the maximum possible 

(the one at which all the nearest neighbors of a given node would 
be connected directly to each other) is called the clustering 

coefficient of the node .iC
 
Naturally, this value does not exceed 

one. 

The clustering coefficient can be determined both for each 
node and for the entire network: 

1

1 n

i

i

C C
n 

  . (1.1.3) 
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In social networks, one can speak of 

a "community structure" when there are 

groups of nodes that have a high density 

of connections between themselves, while 

the density of edges between individual 
groups is low. For large social networks, 

the presence of a community structure 

turned out to be an integral property. The 

traditional method for identifying the 

structure of communities is cluster 

analysis. There are dozens of acceptable 
methods for this, which are based on 

different measures of distances between 

nodes, weighted path indices between 

nodes, and so on. 

1.1.5.  Betweenness  

Betweenness is a parameter 

indicating how many shortest paths pass 

through the node. This characteristic 

reflects the role of this node in 

establishing links in the network. The 
nodes with the most mediation play a 

major role in establishing links between 

other nodes in the network. Node m

mediation 
mb is determined by the formula: 

( , , )
,

( , )
m

i j

B i m j
b

B i j

  (1.1.4) 

where ( , )B i j is the total number of shortest paths between nodes 

i and j , ( , , )B i m j is the number of shortest paths between nodes 

i and j passing through node m . 

1.1.6. Network elasticity 

The elasticity property of networks refers to the 
distribution of distances between nodes when removing 

individual nodes (tolerance to attacks). 

 

 

D. Watts 

 

S. Strogatz 

Watts DJ, 
Strogatz SH 
Collective dynamics 
of “small-world” 
networks. Nature, 
1998. – Vol. 393.-pp. 
440-442. 
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The elasticity of a network depends 
on its connectivity, i.e. the existence of 

paths between pairs of nodes. If a node is 

removed from the network, the typical 

length of these paths will increase. 

In the study of attacks on web 
servers, the effect of removing the nodes of 

the network, which is a subset of the web 

space of 326,000 pages and about 1.5 billion hyperlinks, was 

studied. For this network, the parameters of the input and 

output distribution of degrees were determined: ( ) ~ ,P k k
 

Where 2,1in   and 2,45out  . 

The average distance between two nodes, as a function of 

the number of removed nodes, almost did not change when 

nodes were randomly removed (high elasticity when attacking 

power-law networks). At the same time, purposeful removal of 

nodes with the largest number of connections leads to the 

destruction of the network. Thus, the web space is a highly 

elastic network in relation to the accidental removal of a node in 

the network, but highly sensitive to deliberate attack on nodes 

with high degrees of connections with other nodes. 

1.1.7. Examples of calculating the characteristics 
of networks 

The main characteristics of networks will be listed below 

and at the same time they will be demonstrated using six simple 

examples. In order to “feel” what exactly these or other 
characteristics describe, the reader is strongly recommended to 

get a few “by hand” numbers in the examples. 

 The six examples of networks considered below will be 

denoted by numbers No. 1 – No. 6 (Fig. 1.1.3). 

 
Albert R., Jeong H., 
Barabasi A. Error 
and a ttack 
tolerance of 
complex networks. 
Nature, 2000. – Vol. 
406. – pp. 378-382.  
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Figure. 1.1.3 – Examples of the simplest networks: network No. 

5 – the so-called digraph (directed graph), network No. 6 – a 

network with link weights (numbers are indicated on the links) 

The adjacency matrices of the networks depicted in fig. 4 
are below: 

1 2

0 1 1 1 0 1 1 1

1 0 0 0 1 0 0 1
, ,

1 0 0 1 1 0 0 1

1 0 1 0 1 1 1 0

   
   
    
   
   
   

A A  

3 4

0 1 0 0 0 0
0 1 0 0 0

1 0 1 0 1 1
1 0 1 0 1

0 1 0 1 0 1
, ,0 1 0 1 1

0 0 1 0 1 1
0 0 1 0 1

0 1 0 1 0 0
0 1 1 1 0

0 1 1 1 0 0

 
  
  
  
   
  
  
 

   
 

A A

For network #5, 
the adjacency matrix 

5A is not 

symmetrical. 

The adjacency 

matrix elements 6A

are the link weights. 
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5 6

0 1 0 0 0 0 2 0 0 0

0 0 1 0 1 2 0 8 0 7

, .0 0 0 0 1 0 8 0 9 1

0 0 1 0 1 0 0 9 0 4

0 0 0 0 0 0 7 1 4 0

   
   
   
    
   
   
   
   

A A

 

Distribution of nodes by their degrees  P k
 
shown in fig. 

1.1.4, which also shows such a characteristic of networks as the 

average number of links per node: 

 
1 1

1 N N

i i i

i i

k k k P k
N  

   , (1.1.5) 

which is calculated as the ratio of all links in the network to the 

number of nodes and, at the same time, as the average of a 

discrete variable ik with a distribution function  iP k . 

An important characteristic of a node is its clustering 

coefficient – iC , which characterizes the connectivity between 

the neighbors of this node i . The clustering coefficient iC can be 

written as the ratio of the number of triangles with a vertex i to 

the number of forks (two bonds coming out of a node) with a 

base at that node: 

Number of triangles with vertex 

Number of forks with vertex 
.

i

i
C

i
  (1.1.6) 

Let us consider, for example, nodes 2 and 3 networks No. 

4. For node No. 2, thick lines denote forks (there are three of 
them) and triangles (it is one). 
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As you can see, there are three forks and one triangle for 

the second node, so 2 1/ 3C  . 

For the third node, there are three forks and two triangles 

– 2 2 / 3C  . 

Another network is shown in Fig. 1.1.4. 

 

Figure. 1.1.4 – Network options 

The clustering coefficient of the entire network is 

calculated by the formula: 
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1

1
.

N

i i

i

C C C
N 

    (1.1.7) 

In table. 1.1.1 shows the clustering 

coefficients for all nodes of networks No. 

1, No. 2, No. 3 and No. 4, as well as the clustering coefficient of 

the entire network .C  On fig. 1.1.5. The distribution of nodes by 

degrees for the networks shown in fig. 1.1.3. 

As you can see, network No. 2 has the highest clustering 

coefficient; on average, it has the largest number of neighbors of 

each node interconnected. Network No. 3 has the smallest 
clustering coefficient. 

Table 1.1.1 Clustering coefficients 

 

 

The clustering coefficient of a node can be calculated 

without resorting to listing triangles and forks, directly from the 

adjacency matrix: 

 
,

, ,
1

ij jm mi

j m

i i ij

ji i

A A A

C k A
k k

 



  (1.1.8) 

where the summation is over all nodes. 

Using examples of simple networks, it is easy to verify 

directly that definitions (1.7) and (1.8) give the same values of iC

. 

.
i

i

i

C








 

C is the network 
clustering coefficient.  

Net 
1C  2C  3C  4C  5C  6C  C

 
No. 1 1/3 0 1 1 1   7/12 

No. 2 2/3 1 1 1 2/3   10/12 

No. 3 0 1/6 2/3 2/3 1/3 0 2/3 11/36 

No. 4 0 1/3 2/3 2/3 1 2/3  8/15 
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Network No. 1, 2k    Network number 2, 2,5k   

 

 

 

Network No. 3, 8 / 3 2.67k     Network No. 4, 12 / 5 2.4k    

 

 

 

Network No. 5, incoming links

1.2k   

 Network No. 6, outgoing links  

1.2k   

Figure. 1.1.5. Distribution of nodes by degrees for the considered 

networks 
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In addition to the definition of the 
clustering coefficient of the entire 

network (1.1.7) and (1.1.8), there is 

another definition in the literature that 

is close, but not identical, sometimes 

called transitivity – T : 

 

   

3

3

1

1 1

,

1 1

N

ii
i

N N

i i i i

i i

Tr
T

k k k k



 

 

 



 

A
A

 (1.1.9) 

which is expressed in terms of the number of triangles and forks 

in the entire network as follows: 

Number of triangles in the network
3

Number of plugs in the network
T   

 
(1.1.10) 

  

For comparison, below are the values of the clustering and 

transitivity coefficient for networks No. 1, No. 2, No. 3 and No. 4 

– Table. 1.1.2. 

Table 1.1.2. Clustering 
coefficients 

Net No. 1 No. 2 No. 3 No. 4 

С  
7

0.58
12

  
10

0.83
12

  
11

0.31
36

  
8

0.53
15

  

T  
3

0.6
5
  

3
0.75

4
  

3
0.086

35
  

3
0.6

5
  

Another important characteristic of networks is the 

average minimum distance between their nodes: 

T – transitivity, a 
characteristic close to 
the clustering 
coefficient. 



 26 
 

 

1
,

1
ij ij

i j

l l l
N N 

 

  (1.1.11) 

where ijl is the least number of steps from node i to node j . In 

this case, each step corresponds to a unit distance. 

A similar definition can be used in loaded networks, while 

each step can correspond to both a distance proportional and 

inversely proportional to the weight: 

 

1

1 1 1
.

11/ i j ijij

l
N N ll





 
   

  
  (1.1.12) 

In the case of the arithmetic mean (1.1.11), the largest 

contribution will come from the longest paths (out of the shortest 

ones), while in the case of the harmonic mean, the shortest ones. 

If there are isolated nodes in the network that cannot be reached 

and for which it is natural to consider ijl   , the definition of 

the minimum average distance as an arithmetic average ceases 

to be informative, since even if there is one such isolated node 

ijl l   . In such a situation, it is convenient to use the 

definition of the average minimum distance as the harmonic 

mean – l . Sometimes the reciprocal l is denoted 1/E l and 

called efficiency (efficiency). 

The smallest number of steps ijl from node i to node j can 

be written as a matrix SP (short path). The numerical values of 

this matrix for networks No. 1 – No. 6 are equal to: 

 

  

0 1 1 1

1 0 2 2
1 ,

1 2 0 1

1 2 1 0

 
 
 
 
 
 

SP   

0 1 1 1

1 0 2 1
2 ,

1 2 0 1

1 1 1 0

 
 
 
 
 
 

SP  
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 

0 1 2 3 2 2

1 0 1 2 1 1

2 1 0 1 2 1
3 ,

3 2 1 0 1 1

2 1 2 1 0 2

2 1 1 1 2 0

 
 
 
 

  
 
 
 
 

SP   

0 1 2 3 2

1 0 1 2 1

4 ,2 1 0 1 1

3 2 1 0 1

2 1 1 1 0

 
 
 
 
 
 
 
 

SP  

 

0 1 2 2

0 1 1

5 ,0 1

1 0 1

0

 
 
 
 
    
 
  
     

SP   

0 2 10 13 9

2 0 8 11 7

6 .10 8 0 5 1

13 11 5 0 4

9 7 1 4 0

 
 
 
 
 
 
 
 

SP  

Note that the matrix  5SP (for a directed network) 

contains infinite elements, for example  21 5l   (compare with 

 21 4 1l  ). This, of course, means (see Figure 5 of the network) 

that it is impossible to get from node 2 to node 1. 

In a network with weights, ijl each step along a link is 

multiplied by its weight, so that not just the number of steps 

(links) is summed up, but their weights. This is precisely why 

the shortest path in network 6 between nodes 3 and 4 includes 

two steps with weights 4 and 1, and not one step with weight 1. 

The average values of the shortest paths (1.1.11) for the 

networks under consideration are: 

 
4

1 1.3,
3

l     
7

2 1.16,
6

l     
23

3 1.53,
15

l    

 
3

4 1.5,
2

l     5 ,l     6 7.l   
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harmonic mean: 

 

Another important characteristic of the network is the so-

called mediation (betweenness). Table 1.1.3 shows the numerical 

values of mediation for all network nodes No. 1 – No. 6. 

Table. 1.1.3. Mediation values for 

networks #1 – #6. 

Knot 

 

network 

number 

1B
 2B

 3B
 4B

 5B  6B  

1 4
 

0
 

0
 

0
 

  

2 1
 

0
 

0
 

1
 

  

3 0
 

10
 

4/3 2
 

4/3
 

4/3
 

4 0
 

6
 

2
 

0
 

2
 

 

5 0 2 0 0 0  

6 0 6 0 0 8  

Recall that when calculating mediation in a network with 

weight, the shortest path is calculated taking into account the 

weight of the links. 

In addition to the main 

characteristic of the network – the 

distribution of the degree of nodes over 

links –  P k , see fig. 1.1.2 also 

introduces the distribution of bond 

ends –  nnP k : 

 
 

.nn

kP k
P k

k
  (1.1.13) 

 1 1.2,l    2 1.09,l 

 

 3 1.32,l   

 4 1.28,l    5 2.86,l 

 

 6 3.85.l 

 

 nnP k - 

distribution of bond 
ends. 
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This distribution is also called the degree distribution of 
nearest neighbors (degree distribution of the nearest neighbor), 

which is where the notation comes from  nnP k . Using a simple 

example of network No. 1, it is easy to verify that (1.1.13) does 

indeed give the distribution of the ends of the connections. For 

network No. 1, we have eight ends, i.e. the probability that one 

end of the link hits the node is 1/ 8 . The node has 1one link, 

so  1 1/ 8nnP узел  . Each node has 3 and 4 – 2/8, i.e. 

2 2 / 8 1/ 2  , thus    3 4 1/ 2nn nnP узел P узел  ,  2 1/ 2nnP узел 

and for node 1 – 3 1/ 8 , i.e.  3 3 / 8nnP узел  . 

On the other hand, the same values are immediately 

obtained from (1.1.13), for example, for the first node 

   
 

1

1 1 1 1/ 4 1

2 8
nn

P
P узел

k


   , 

and similarly for others. 

Qualitatively, the expression for  nnP k (1.1.13) can be 

explained as follows. The probability that a randomly selected 

link hits nodes with k links is proportional to the number of all 

links of such nodes    nnP k NkP k , where N is the total 

number of nodes in the network. Taking into account the fact 

that   1nnP k  , the normalization constant is equal to 1/ k , 

whence (1.1.13) follows. 

The distribution  nnP k for simple networks coincides with 

 P k only in exceptional cases (when the equality holds for each 

node k k ), for example, for an infinite square lattice. 

Having the distribution of the ends of the links,  nnP k we 

can introduce the degree of nodes averaged over this distribution 

: 
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 
 

2

1 1

.
N N

nnnn
k k

kkP k
k kP k k

k k 

     (1.1.14) 

For an uncorrelated network, knowing the distribution of 

ends  nnP k allows you to find the probability of connecting 

nodes with powers k and k  -  ,P k k . Because the probability 

that the link "sticks" into a node with a degree k is equal to 

    /nnP k kP k k , the probability that it simultaneously 

"sticks" and into a link with a degree k  is equal to the product 

     
   

2
, .nn nn

kP k k P k
P k k P k P k

k

 
    (1.1.15) 

We now introduce the concept of the average number of 

first, second, and next neighbors. If a node has degree k , then it 

has k neighbors, so the average number of nearest (first) 

neighbors 
1z is, as it should be: 

1 .kz k p k    (1.1.16) 

The first neighbors of the node, in turn, have their own 

neighbors, which it is logical to call the second neighbors closest 

to the original node. If the first neighbor has degree k , then it 

has 1k  neighbors (one of the links "left" to the original node). 

The number of first neighbors with degree k for all nodes is 

kN k p  , so the number of all second neighbors is: 

The ratio of the average number of second neighbors to the 

first: 

   2 2

2

1
1 .k kz k k p k k p k k

N
         (1.1.17) 
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2

2

1

k kz
B

z k


   (1.1.18) 

is called the branching factor (branching coefficient), it 
characterizes the degree of "multiplication" of bonds as you move 

away from the node. 

The branching factor can also be obtained from such 

considerations. Probability  nnP k can be 

interpreted as the probability  1Q k 

that a link from some selected node A

will enter a node B with 1k  links, so that the node B will have 

in the sum k of links: 

   
 

1 .nn

kP k
Q k P k

k
    (1.1.19) 

Then the average number of links outgoing from the node 

B (without taking into account the connection with the node A ) 
is equal to: 

 
   

   

0 0

2

1

1 1

1
.

N N

k k

N

k

k k P k
kQ k

k

k kk kP k

k k

 



 
 


 

 



 (1.1.20) 

The last equality is valid for 1N . 

Knowing the branching factor B (1.1.18), it is easy to 

calculate the average number of the following (third, fourth, etc.) 
neighbors: 

B   branching 
factor 
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2

2
1 1 1

1

,m m m m

k kz
z Bz z z

z k
  


  

 

1

2
1

1

.

m

m

z
z z

z



 
  
 

 

(1.1.21) 

 

 

 
(1.1.22) 

The expression for the average number m of neighbors 

makes it possible to answer a very important question: does the 

network have a so-called giant cluster (Giant connected Cluster 

or Giant connected component). 

Those. whether there is a network cluster 
(an interconnected part of the nodes), which 

includes the number of nodes of the order of the 

total number of nodes in the network. When 

calculating more and more distant neighbors (

1m  ) according to (1.1.22), two scenarios are possible: when

2 1, 1mz z z 
 
and at 

2 1, 1mz z z  . 

In the second case (it is assumed that 1N  ) from 

(1.1.21) it follows: 

1
2

2 1
1

1 1 2

,

m

m

m m

z z
z z

z z z



 
  

 
   (1.1.23) 

and strict equality, of course, takes place in the limit N  . 

 From (1. 1.23) it immediately follows that at 
2 1z z , i.e. at 

 

2 ,k k k   (1.1.24) 

there is an infinite cluster in the network. 

Inequality (1.1.24) is called the Molloy-Read 

criterion, it is often written in this form 

2 2 0.k k   (1.1.25) 

GC – Giant 
Cluster – a giant 
cluster 

Molloy-Read 

criterion 
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Thus, according to (1. 1.25), a giant cluster exists if the 
number of second neighbors is greater than the average number 

of links leaving the node. 

The existence of a giant cluster also means that by 

choosing arbitrarily distant nodes from each other, we can pass 

through the network from one node to another with a non-zero 
probability. That is why the values of the parameters at which 

2k it reaches the value 2 k are referred to as the percolation 

threshold. The value of the percolation threshold 
cp in this case 

is equal to: 

2
.c

k
p

k k



 (1.1.26) 

1.2. Artifact network models 

1.2.1. Erdős-Rényi networks 

A network (graph) of Erde sha Renyi (ER -network) is such 

a network when each pair of nodes is connected with probability 

p . In the limit of a large number of nodes, N the distribution 

function of degrees of nodes has the form: 
 

 

 

In the limit N  , the value in k the ER network 

constructed in this way is uniquely determined. In a real case, 

for a finite value of the number of nodes, two models of the ER 

network should be distinguished – the Hilbert model ( npG -model) 

and the Erdős-Renyi model itself ( nmG ). The probability is fixed 

p in the model nmG . For a network with a finite number of 

nodes, N this means that k pN , while the number of 

connections M is determined only on average 

.
!

k

k

k

k
P e

k


  

(1.2.1) 
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 1 / 2M pN N  . In the Hilbert model, npG not the probability 

is given p , but the number of connections M , now the 

probability p
 
is defined as  1 / 2M pN N  , and the average 

degree of the node is 2 /k M N . The distinction between these 

models is analogous to the distinction between canonical and 

microcanonical ensembles in statistical physics. In the 

microcanonical ensemble, the energy of the system is given, and 

in the canonical ensemble, the temperature, while the energy 

fluctuates around the mean value. 

In the limit N  , 0p , pN
 
is a finite number not 

equal to zero, both definitions of the Erdős-Rényi and Hilbert 

networks coincide. 

The Erdős-Rényi network is "well connected" – the average 

minimum distance between nodes of order ln N N ( 1N  ). 

The average minimum distance between nodes can be easily 
estimated from the following considerations. Each neighbor also 

has, on average, k neighbors, each of which can be reached in 

two steps. For l steps, you can reach 
l

k the nodes on average. 

 

Then for the average minimum distance 

l between the nodes of the network from N
the nodes we get: 

 

 
 

 

A very small (logarithmically small compared to the 

number of nodes) value of the minimum distance makes a 

random ER network a so-called "small world". For each node of a 

network consisting, for example, of 
910N  nodes (the order of 

the number of people on Earth) with an average number of 

connections 100k  (approximately how many people we 

For ER network :  

~ lnl N  

ln
.

ln

N
l

k
  (1.2.2) 
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personally know), the minimum average distance is 
9 2ln10 / ln10 4.5l   , i.e. no more than five steps. 

Note that for a regular network, for example, for a square 

lattice, this distance is much larger 
1/2~ lnl N N , for the given 

example
910 30000 4,5.l    

The critical value 
cp at which a giant cluster is born in the 

ER network is immediately found from the Molloy-Read criterion 

 2/cp k k k  . Since  2 1k k k  , then for 
cp we get: 

 

 

1.2.2. Scale invariant networks 

The node degree distribution function 
kP for a scale-

invariant network (Scale – Free – SF) has the form: 

1
, 0kP k

k
 


. (1.2.4) 

Such a distribution is well known in probability theory as 
the Pareto distribution. Typically, for real networks, the indicator 
 ranges from 2 to 3. 

 In the case when k it can be considered a continuous 

variable, we denote it – x ( 0x  ) it is necessary to take into 

account that in all real cases there is a minimum value of this 

variable – 
minx . Normalization constant C

 
for the continuous 

case is determined, in this case, from the condition 

 
min

1
x

p x dx


 and is equal to 

    1

min, 1 / ,p x Cx C x      (1.2.5) 

whence it is clear that the distribution (1.31) makes sense only 

for 1 . 

1
.cp

k
  (1.2.3) 
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 An additional restriction 2 on the indicator is imposed 

by the requirement to have a finite average value - :x  

 
min

min

1
, 2

2
x

x xp x dx x




  






, (1.2.6) 

and for the existence m of the -th moment 

min

1
,

1

m mx x
m




 




, (1.2.7) 

condition is required 1 m  . 

Associated with the distribution (1.2.5) is the so-called rule 

80 / 20 , in a joking version – "20% of people drink 80% of beer", 

and it is assumed that this kind of ratio takes place for many 

other human activities. 

Indeed, the proportion of nodes  S x with a degree value 

greater than x , is: 

   
1

minx

x
S x p x dx

x

   
  

 




. (1.2.8) 

These nodes in total contain a share  W x of all links 

 
 

 
min

2

min

x

x

xp x dx
x

W x
x

xp x dx



 



 
   

 







. (1.2.9) 

From (1.2.8) and (1.2.9) it immediately follows 
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2 1
1

1 1W S S




  



  . 
(1.2.10) 

On fig. 1.2.1 shows the dependence W on S for various values of 

 . Obviously, the greater the value of the index  , the 

 W W S closer the dependence is to a linear one. 

With an indicator 2.161 for, 0,2S  the value 0.8W 

corresponds to the Pareto rule (80/20). The greater the value of 

the index  , the  W W S closer the dependence is to a linear 

one. 

 

Figure. 1.2.1 – Dependency  W W S  

Let us now explain what the term “scale-free” means in 

relation to the SF network. For clarity, we will assume that the 

degree of the node (the value of the quantity x ) is the wealth 

that a person (this node) possesses. Then you can calculate the 

relative proportion  MS x of people with great wealth 
Mx , who 

own half of all money. 
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With an indicator 2.161 for, 0,2S  the value 0.8W 

corresponds to the Pareto rule (80/20). The greater the value of 

the index  , the  W W S closer the dependence is to a linear 

one. 

Let us now explain what the term “scale-free” means in 

relation to the SF network. For clarity, we will assume that the 

degree of the node (the value of the quantity x ) is the wealth 

that a person (this node) possesses. Then you can calculate the 

relative proportion  MS x of people with great wealth 
Mx , who 

own half of all money. 

On the one side: 

 

 

 

on the other hand, a share of their wealth   1/ 2MW x  , i.e. 

  

 

 

 

 

Substituting values
Mx

 
from (1.2.11) to (1.2.12) we find 

 

 

 

those. for the value of the indicator, 2.161 less than 1% 

(0.67%) of people own half of all money. 

Let's call these people "rich". Scale-free means that among the 

"rich" the distribution between "rich" and "poor" is exactly the 

          
1

minM

M
M

x

x
S x p x dx

x

   
   

 




, (1.2.11) 

 

 

 
min

2

min

1

2

Mx M
M

x

xp x dx
x

W x
x

xp x d



 



 
   

 







. (1.2.12) 

   
1

32

2.161
2 , 6.7 10M MS x S x







  







, 

(1.2.13) 
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same. That is, how easy it is to calculate that 0.67% of the “rich” 
own half of the “wealth” of the “rich” (i.e. 1/4 of all wealth). 

For  any value b for scale-free distribution 

 

 

those. rescale ( x bx ) only results in multiplying the 

distribution by a constant. 

Another often cited example for the SF distribution is 
related to "computer life". If the PC has files of size 2 Since B is a 

quarter of 1 KB files, then the number of 2 MB files will be a 

quarter of the number of 4 MB files. 

In the discrete version of SF, the distribution is normalized 

a little more complicated: 

 

 

 

where  
1k

k






   is  the Riemann function. 

Thus, according to (1.2.15): 

 

 
k

k
Р






 
 

In the case when the “poor tail” is cut 

off, i.e. nodes with degrees less than 
mink are 

not considered, the distribution 
kp is written as follows: 

 
min

min

,
,

k

k
p k k

k



 


 
, (1.2.16) 

a is  min,k  equal to 

     P bx g b P x , (1.2.14) 

 
1 1

1
1 k

k k

Р C C
k

 

 

    
  , (1.2.15) 

Dorogovtsev, AV 
Goltsev, JFF 
Mendes. Critical 
phenomena in 
networks 
complex, 
arXiv:0705.0010. 
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 
min

min,
k k

k k






    , (1.2.17) 

A network (graph) with an SF node degree distribution can 

be either random or deterministic. There are many "toy" 

examples of deterministic networks with SF distribution, for 

example, the so-called  ,u v -flowers and  ,u v -trees. The 

construction  ,u v of a -flower begins with a chain w u v  of 

links, after which, at each next step, each link is replaced by a 
chain of two parts u and v , as shown in Fig. 5. 

On fig. 1.2.2 shows several steps for constructing (1.2), 

(1.3), and (2.2) colors. 

At n the th construction step, the number of connections in 

such a network is  
n

nM u v  . 

At the same time, the number of nodes at n the -th step is

nN
 
obeys the following iterative relation 

1n nN wN w  . w u v  . (1.2.18) 

where 

2

1 1

n

n

w w
N w

w w

 
  

  
. (1.2.19) 
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Figure. 1.2.2 – An example of s construction  ,u v of –flowers: a – 

(1,2)-flower; b – (1,3)-flower; c – (2,2)-flower: 

 
– nodes appearing at the given construction step; 

 - "old nodes"; bold lines are links that appear at a given 

construction step. 

According to the rule for constructing  ,u v -colors, at n

the -th step there are nodes only with degrees 

2 , 1,2,...,mk m n  , (1.2.20) 

denoting nN - the number of nodes at a step n with a degree 2m
, 

we can write the following iterative relation : 

      1

1 ,11 2 n

n n mN m N m w w      (1.2. 21) 

From : 

 
 2 , ,

, .

n m

n

w w m n
N m

w m n

  
 


 (1.2.22) 
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T ak as with 1n     ~nN m p k from   ~ m

nN m w
and 

2mk  it follows that 

 p k k 
, (1.2. 23) 

Where 

 lnln
1 1

ln 2 ln 2

u vw



     (1.2.24) 

And thus  ,u v -flowers are indeed SF -networks. 

For a network with ~kp k  there are nodes with the 

maximum degree value – 
maxk . The value of 

maxk , of course, 

depends on the total number of nodes – N . This dependence is 

power-law and depends on the exponent as follows  : 

1

1

max ~ .k N


  (1.2.25) 

The clustering coefficient for SF for a random graph is 

determined from 

2
2

2
,

k kk
C

N k

 
 
 
 

 (1.2.26) 

where for 3 we have 
2 3

max~k k 
and, thus: 

3 7
, .

1
C N  




 



 (1.2.27) 

1.2.3. Watts–Strogatz Small World Networks 

In the 70s of the last century, the American psychologist 

Milgram (Milgram) conducted an interesting study. He wondered 

what the "distance" was between two randomly selected people. 

Distance refers to the number of acquaintances required to 
establish a connection between these people. Milgram acted as 
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follows – since he lived in Boston, a city far from Boston was 
chosen – Nebraska, and envelopes were handed out to randomly 

selected people, which had to be transferred to Boston. 

Envelopes could be transferred only through their acquaintances 

and relatives. Milgram got a very unexpected result: on average, 

each envelope passed through six people. And so the theory of 
"six handshakes" was born. Those. each person is connected 

with any other by a chain of no more than six personal 

acquaintances. In this sense, our world is spoken of as a small 

world – “ small world ". 

The model of transition from a large (regular) world to a 

small one was proposed by Watts (Watts) and Strogatz (Strogatz). 

This model is a one-dimensional regular lattice consisting of N

nodes, where each node is connected only to its k nearest 

neighbors and periodic boundary conditions are imposed, i.e. the 

lattice was rolled into a ring, see fig. 1.2.3. After that, each 

connection 1 was transferred with probability to another 

randomly selected node. True, with such a procedure, there is a 

possibility of the appearance of isolated nodes. 

 

A     b 

Figure. 1.2.3 – An example of a small world with three hops (

16N  ): a – each node is connected to its nearest neighbors 

( 2k  ), b – each node is connected to four neighbors ( 4k  ) 

Formally, the distance to them from any node will be 

infinite. To avoid this, Newman and Watts proposed not to 

transfer connections, but simply to add them. Let's take a 

closer look at this version of the model. 
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The average distance between the ends of the added 

links is:    2 1 2N N     . For convenience, we omit the 

two in the denominator and define it  as: 

1



. (1.2.28) 

For 2k  a natural generalization gives: 

1

k






. (1.2.29) 

Since there is only one characteristic size of the system  , 

the dimensionless ratio of the average distance between graph 

nodes to the number of all graph nodes l N can depend only on 

the dimensionless quantity N  . Those. you can write: 

N
l N f

 
   

 
, (1.2.30) 

where  f x is a scaling function with the following asymptotics: 

   

, 1

log
1

cons x

f x x
x

x







. (1.2.31) 

As mentioned above, there are many ways to determine the 

correlation radius. Let's assume that 
  . Let us show with 

the help of the renormalization group transformation (for 2k  ) 

that 1 . So let's have: 

 l N f N    . (1.2.32) 

Let us perform the renormalization group transformation shown 

in Fig. 1.2.4, namely: we combine neighboring nodes in the 
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graph into pairs, while in the new graph the nodes are connected 
by an added link, if at least one of the pairs had such a link in 

the original graph. 

 

Figure. 1.2.4 – Renormalization group transformation. Two 
adjacent black nodes are merged into one big black node in 

the new graph, and similarly for white nodes 

With such a transformation, it can be clearly written that: 

1

2
N N  . 2    . (1.2.33) 

where the dashed values refer to the right graph in Fig. 1.2.4. 

It is also clear that the average minimum distance in the 

new graph l

 

will be two times different. 

1

2
l l  . (1.2.34) 

Substituting (1.2.33) and (1.2.34) into (1.2.32) we get: 

 

 

log
1

log

N N 
 




 
. (1.2.35) 

For, 2k  a similar transformation can be carried out, only 

now it is necessary to group not by two nodes, but by 2k nodes. 

The result naturally remains the same – 1 . 
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The small world model described above can be generalized 
to large dimensions. So, for example, in the two-dimensional 

case it can be a regular square lattice with additional 

constraints, as shown in Fig. 1.2.5. Here below, by k is 

understood the degree of the node, i.e., number of nearest 

neighbors. But one must keep in mind that in the literature, 

when describing a small world, the term is k often understood 

as the number of neighbors in one direction. 

 

Figure. 1.2.5 – An example of a two-dimensional ( 2d  ) small 

world, 4k  . 

Then instead of (1.2.29) we will have: 

 
1

1
d

k d


 



, (1.2.36) 

where is d the dimension of the small world. And the expression 

(1.2.30) will take the form: 

  1 dN
l f k N

k
    . (1.2.37) 

For a one-dimensional small world, one can explicitly find 

the clustering C and the average minimum distance l for a small 

world; here are the final expressions: 
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   
33 ( 2)

1
4 ( 1)

k
c

k

 
  

 
 

 

(1.2.38) 

And 

 
1 1

arth
2 2

1 1

l

k
N N

 
 
  
 

    
  




 

. (1.2.39) 

As it should be when writing the expression (1.2.39) in the 

form (1.2.38), the function  f x has the following asymptotics: 

 
 

1
, 1

4
~

log 2
1

4

x

f x
x

x
x






 

. (1.2.41) 

On Fig. 1.2.6. plots of normalized dependences of 

clustering C and average distance l on the concentration of 

umklapps are given p . 

You can read more about scaling in the small world here: 

M. EJ Newman and DJ Watts. Scaling and percolation in the small-
world network model. Phys. Rev. E 60, 7332–7342 (1999) (arXiv: 
9904419v2).  

About renormalization group transformation Can read here : 
Newman M.E.J., Watts DJ Renormalization group analysis of the 

small-world network mode. Phys. Lett. A 263, 341–346 (1999). 
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Figure 1.2.6 – Dotted line – normalized clustering. Solid line – 

normalized medium minimum distance. Normalization takes 

place on a regular graph (without transfers) – (0) 1, (0) 1C l   

An ordinary regular graph (for example, a grid) is 

characterized by a large average minimum distance and a large 
(close to unity) clustering. And for a completely random graph, 

both of these quantities fall. Therefore, usually large l is 

associated with large C and vice versa small l with small C . 

Here we see (see Fig. 1.2.6) that there is a large range of values, 

in which relatively large C and small l . This is the characteristic 

feature of the small world. 

A detailed derivation of formula (1.2.41) based on the mean field 
theory approximation is described here: “Mean – field solution of 

the small – world network model” – M. E.  J.  Newman, C.  Moore 
and D. J. Watts, Phys. Rev.  Lett. 84, 3201–3204 (2000) (arXiv : 
9909165 v 2). 

1.2.4. Percolation networks 

Let us briefly dwell on one more type of networks – 

percolation networks. In the simplest version, a percolation 

network is built from a regular, for example, square lattice by 

pulling out (destroying) randomly selected links. On fig. 1.2.7 the 

remaining bonds are indicated by a thick line torn out by a thin 
one. Let connections (nodes) break out when creating a 
percolation network with a probability of 1 – p, then it will 
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consist of p ∙ N (N is an integer number of links (nodes)) of the 

so-called black links (nodes). 

 

For each such a network (square, triangular, hexagonal, 

cubic,...) exists such meaning cp  (percolation threshold) that 

when cp p it is possible to pass through the black links 

through the entire network, but cp p not when. 

On fig. 1.2.8 shows a large percolation network for two 

cases a - below the percolation threshold  cp p and б - above 

 cp p . 

 

Figure. 1.2.7 – Square lattice with randomly torn bonds (thin 

lines) 

For different lattices – triangular, square, cubic, etc. its 

percolation threshold cp , the numerical value of which can (with 

rare exceptions) only by numerical simulation. Table 1.2.1 shows 

the values of the percolation threshold cp for different gratings. 
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Figure. 1.2.8 – Large size percolation network. On the left, the 

case when the concentration of bonds is less than the 

threshold, on the right – more 

Table 1.2.1. The numerical value of the 

percolation threshold cp  

Lattice Node task Communication 

task 

Hexagonal 0.69  0.65  

To the address 0.59  1

2
 

triangular 1

2
 

0.35  

cubic 0.31 0.25  

4d  hypercubic 0.197  0.16  

5d  hypercubic 0.14  0.12  

6d  hypercubic  0.11 0.09  

Values are underlined cp that are defined exactly. The first 

column is the task of the nodes, the second is the task of the 

links. 

When calculating, cp the size of the lattice is chosen to be 

large enough (in theory, infinite) so that the value cp ceases to 

depend on the total number of nodes – N or connections. 
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The main thing in percolation is the formation of the so-
called infinite cluster, which allows one to pass through the 

links through the entire network (they say from infinity to 

infinity, meaning in the limit the infinite size of the network). The 

number of links in an infinite cluster is of the order of all links in 

the network. 

In this respect, the infinite cluster is similar to Giant 

Cluster in complex networks, such as ER . There is both 
common and different in the properties of an infinite cluster in 

percolation theory and in Giant Cluster in the theory of complex 

networks. 

Giant for short Cluster is like GC an infinite cluster, as PC
we note the following. 

For percolation on the Kelly lattice  1/ 1cp z  , where z

is the coordinate number, for GC ER the network the coordinate 

number from N the bonds is 1N  , and for 1N   1/cp N . 

Thus, with an increase N  cp decreases, which is similar to an 

increase in the spatial dimension of the percolation network. In 

this case, the theory of complex networks  ER in the limit 

N  is analogous to percolation in an infinite dimensional 

space. 

Both in the problem about GC and in the problem about 

PC when cp p the probability of occurrence of GC and PC is 

equal to zero. 

Above the percolation threshold, at, cp p the size GC is 

    cf p N f pN N , where f is an exponentially decreasing 

function of c  1 1f  , while the size PC is  cp p N . 

Another difference lies in the structure GC - it is trees, 

while PC it has a fractal structure. 

Percolation networks are described in more detail in the 

second part of this tutorial. 
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1.3. Examples of real networks 

The study of a significant number of complex artifact 

(artificially created) networks, some of which are described here, 

was initiated by the desire to understand and describe 
numerous real networks – from communication networks to 

ecological networks. Here are some of them: 

1. World Wide Web : The number of websites is 

919,533,715 (as of March 2014 according to the 

Netcraft service, Figure 1.3.1), covering over a 

trillion (
1210 ) web pages. One-way links between 

individual web pages are implemented as 

hyperlinks. 

2. Internet – "Physical network" (Fig. 1.3.2, 1.3.3); 

3. Protein networks (Fig. 1.3.4); 

4. Metabolism network; 

5. Ecological networks; 

6. Phone calls network; 

7. Terrorist network; 

8. Citation network (acyclic); 

9. Linguistic (a network of related words); 

10. Neural networks. 
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Figure. 1.3.1 – The dynamics of the development of the 

World Wide Web according to the Netcraft service 

(http://netcraft.com) 

 

 
 

Figure. 1.3.2 – Dynamics of growth in the number of 

Internet domains according to the isc service.org 
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Figure. 1.3.3 – Link map of Internet servers as a complex 

network (according to wikipedia.org) 

 

Figure 1.3.4 – Protein network (Protein Structure Initiative 

project, site www.helixscript.com) 
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2. Problems of searching in networks 

2.1. Vector-spatial search model 

Most of the well-known information 

retrieval systems are based on the use of the 

Vector Space Model proposed by G. Salton in 
1975 and applied by him in the SMART 

system. This model is classical algebraic. 

Within this model, a document is described 

by a vector in Euclidean space, in which 

each term used in the document is assigned 

its weight value, which is determined on the 
basis of statistical information about its 

appearance both in a separate document and in the entire 

document array. The description of the query corresponding to 

the topic required by the user is also a vector in the same 

Euclidean space of terms. The scalar product of the 
corresponding request and document vectors is used to estimate 

the proximity of the request and the document. 

Within this model, each term 
it in the 

document 
jd corresponds to some non-

negative weight ijw . 

In this model, the query q , which is 

also a set of terms that are not 

interconnected by any logical operators, also 

corresponds to a vector of weight values iqw . 

Thus, each document and query can be 

represented as a n dimensional vector, where is n  the total 

number of terms in the model dictionary. In accordance with the 

considered model, the proximity of the document jd  to the query 

q , which, as in the previous models, are considered as 

information vectors 1 2( , ,..., )j j j njd w w w and 1 2( , ,..., )q q nqq w w w , 

are evaluated as their scalar product. In this case, the weight of 

 

Gerhard Solton 

(1927-1995) 

Lande D.V., 
Snarskii A.A., 
Bezsudnov I.V. 
Internet: 
Navigation in 

complex networks: 
models and 
algorithms. – M.: 
Librokom 
(Editorial URSS), 
2009. – 264 p. 
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individual terms can be calculated in different ways. One of the 
possible simplest approaches is to use as the weight of a term 

ijw in a document the normalized frequency ijfreq of its 

occurrence in a given document, that is: 

1
/ max( ).ij ij ij ij

i n
w tf freq freq

 
                   (2.1.1) 

However, this approach does not take into account how 

often a given term is used in the entire array of documents, the 

so-called discriminatory power of a term. Therefore, in the case 
where statistics on the use of terms in the entire document array 

is available, the following rule for calculating the weight is more 

efficient: 

log ,ij ij

i

N
w tf

n
 

                                        

(2.1.2) 

where is 
in  the number of documents in which the term is used 

,jt and is N  the total number of documents in the array. 

It should be noted that the above formula has been 

repeatedly refined in order to most closely match the documents 
issued by the systems to user requests. In 1988, Salton 

proposed this option for calculating the weight of a term 
it from a 

query: 

1

0.5 log ,
max

iq

iq

lq i
l n

freq N
w

freq n
 

 
   
 
 

                  

(2.1.3) 

where iqfreq is the frequency of a term 
it from a query in the text 

of a document consisting of n terms. 

Typically, the weights ijw are normalized, which allows the 

document to be treated as an orthonormal vector. This method 

of term weighting has a standard notation – TF IDF , where TF
indicates the frequency of occurrence of the term in the 

document (term frequency), and IDF   by the reciprocal of the 
number of array documents containing the given term (inverse 

document frequency). 
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When the task of determining the thematic proximity of two 
documents or a document and a query arises, this model uses a 

simple scalar product 
1 2( , ),sim d d of two corresponding vectors of 

weight values  1 1, ...,i nw w and  2 2, ..., ,i nw w which, obviously, 

corresponds to the cosine of the angle between the vectors – 

images of documents 
1d and 

2 .d Obviously, 
1 2( , )sim d d belongs to 

the range [0, 1]. The larger the value, 
1 2( , )sim d d  the closer the 

documents 
1d and 

2 .d For any document, d we have ( ) 1.sim d,d 

Similarly, the measure of the proximity of the document jd and 

the query q is the value: 

1

2 2

1 1

( , ) .
| | | |

n

ij iq
j i

j
n n

j

ij iq

i i

w w
d q

sim d q
d q

w w



 


 





 

    (2.1.4) 

The vector-spatial model of data representation provides 

systems built on its basis with the following capabilities: 

 processing requests without restrictions on their length; 

 ease of implementation of the search mode for similar 
documents (each document can be considered as a 
request); 

 saving search results with the ability to perform a 
refinement search. 

At the same time, the vector-spatial model does not provide 

for the implementation of queries that implement logical 

operations, which significantly limits its applicability. In 

addition, being the methodological basis of others, including 

network search models, the classical vector -spatial model is 

focused on searching for information arrays that do not have an 

explicit network structure. 
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2.2. Peer-to-Peer Search Models 

We will consider models of search in a 

network environment using the example of 

search in the so-called peer-to-peer 
networks. Peer-to-peer networks (Peer-to-

peer, P2P – peer-to-peer) are computer 

networks based on the equality of 

participants. In such networks, there are no 

dedicated servers, and each node (peer) is 

both a client and a server. The phrase "peer-
to-peer" was first used in 1984 by Parbawell 

Yohnuhuitsman when developing IBM's 

Advanced Peer to Peer Networking architecture. 

P2P is a network protocol that provides the ability to create 

and operate a network of peer-to-peer nodes and their 
interaction. In many cases, P2Ps are overlay networks, using the 

existing transport protocols of the TCP/IP stack – TCP or UDP. It 

should be noted that, in practice, peer-to-peer networks consist 

of nodes, each of which interacts only with a certain subset of 

other network nodes (due to limited resources). To implement 

the P2P protocol, client programs are used that provide the 
functionality of both individual nodes and the entire peer-to-peer 

network. 

Search procedures in peer-to-peer networks imply taking 

into account their diverse topology, often decentralized. Today 

there are no unified approaches to the organization of search 
procedures, so a wide variety of methods are used. It is thanks 

to peer-to-peer networks that many methods of searching in a 

network environment have been developed, a detailed 

description of which will be discussed below. 

Quite often, peer-to-peer networks are supplemented by 

dedicated servers that carry organizational functions, such as 
authorization. In particular, library peer-to-peer networks are 

known that use dedicated servers that play the role of centers for 

authorization, hashing and replication of bibliographic data. 

The centralized client/server architecture implies that the 

network depends on central nodes (servers) that provide the 
terminals (clients) connected to the network with the necessary 

services. In this architecture, a key role is assigned to the 

Gurkin Yu.N. 
Semenov Yu.A. 
P2P file-sharing 
networks: basic 
principles, 
protocols, 
security. Networks 
and 
communication 

systems, 2006. – 
No. 11. – p. 62. 
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servers that define the network, regardless of the presence of 
clients. Despite the fact that all nodes in P2P have the same 

status, their actual capabilities may differ significantly. 

It is obvious that the growth in the number of clients in a 

client/server network leads to an increase in the load on the 

server part, as a result of which it may become overloaded. 

A decentralized peer-to-peer network, on the other hand, 

becomes more productive as the number of nodes connected to it 

increases. Indeed, each node adds its resources (disk space and 

computing capabilities) to the P2P network, as a result, the total 

network resources increase. 

Compared to the client / server architecture, P2P has such 
advantages as self-organization, fault tolerance in case of loss of 

communication with network nodes (high survivability), the 

ability to share resources without being tied to specific 

addresses, increase the speed of copying information through 

the use of several sources at once, wide bandwidth, flexible load 

balancing. 

In addition to the advantages of peer-to-peer networks 

mentioned above, they also have a number of disadvantages. 

The first group of disadvantages is associated with the 

complexity of managing such networks compared to client- 

server systems. You have to spend considerable effort on 
maintaining a stable level of their performance, data backup, 

anti-virus protection, protection against information noise and 

other malicious user actions. 
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The big problem is the legitimacy of the 
content transmitted in such P 2 P networks. 

The unsatisfactory solution of this problem 

has already led to the scandalous closure of 

many such networks (for example, Napster 

in July 2001). There are other problems that 
have a social nature. So in the Gnutella 

system, for example, 70% of users do not 

add any files to the network at all. More than 

half of the resources in this network are 

provided by one percent of users, i.e. the 

network is evolving towards a client-server 
architecture. 

Another problem of P 2 P networks is 

related to the quality and reliability of the 

content provided. A serious problem is the 

falsification of files and the distribution of 

fake resources. Protecting a distributed 
network from hacker attacks, botnets, 

viruses and Trojan horses is a very difficult 

task. Often, information about the 

participants in P 2 P networks is stored in 

an open form, available for interception. 
Another problem is the possibility of 

falsifying node IDs. 

The main task of information retrieval 

in peer-to-peer networks is to quickly and 

efficiently find the most relevant responses 

to a query transmitted from a node to the 
entire network. In this case, of course, the 

search is implemented without the 

participation of the central server, i.e. 

decentralized. In particular, with such a search organization, the 

problem of obtaining a high-quality result with a general 
decrease in network traffic is relevant. 

Let us consider in detail such methods (algorithms) of 

decentralized search: 

– resource search algorithm by keys; 

– method of broad primary search (Breadth First Search); 

Kalogeraki V., 
Gunopulos D., 
Zeinalipour-Yazti 
D. A Local Search 
Mechanism for 
Peer-to-Peer 
Networks. Proc. 

of CIKM'02, 
McLean VA, USA, 
2002. 
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California – 
Riverside, June 
2003. 
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– method of random wide primary search (Random 
Breadth First search); 

– intelligent search engine (Intelligent Search mechanism); 

 – the method of "most results according to the past 

heuristic" (> RES); 

– algorithm of “random walks” (Random walkers 
algorithm). 

Algorithm for searching resources by keys 

In most peer-to-peer networks focused on file sharing, two 

types of entities are used, to which appropriate identifiers (ID) 

are assigned: nodes and resources, characterized by keys (Key), 

i.e. the network can be represented by a two-dimensional matrix 

,MN where is M  the number of nodes, N  the number of 

resources. In this case, the search task is reduced to finding the 

ID of the node where the resource key is stored. On fig. Figure 

2.2.1 shows the process of searching for a resource, launched 

from a node with ID 0. 

In this case, a search for a resource with key 14 is started 

from the node with ID 0. The request goes through a certain 

route and reaches the node where the key 14 is located. Then 

the node with ID 14 sends to the node with ID 0 the addresses of 
all nodes that have the resource corresponding to the key 14. 

Let's consider search algorithms in peer-to-peer networks, 

limiting ourselves to the main methods of searching by 

keywords. 

Broad Primary Search Method 

The method of broad primary search (Breadth First Search, 

BFS) widely used in real P2P file-sharing networks such as 

Gnutella (www.gnutella.com). The BFS method (Fig. 9) in the 

network P2P of dimension N is implemented as follows. The 

node q generates a request that is addressed to all neighbors 

(the closest nodes according to some criteria). When a node p

receives a request, a lookup is performed in its local index. If a 

node r receives a request (Query) and processes it, then it 
generates a response message (QueryHit) to return the result. 
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The QueryHit message includes information about relevant 
documents that is delivered over the network to the requesting 

node (Figure 2.2.2). 

 

 

Figure 2.2.1 – Resource search model by key (black nodes 

contain documents with keys – white nodes do not contain) 

 

Figure 2.2.2 – BFS method 

When a node q receives QueryHits from more than one 

node, it can download the file from the most available resource. 

QueryHit messages are returned in the same way as the original 

query. In BFS, each request causes excessive network load, as it 
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is transmitted over all links (including nodes with high latency). 
Therefore, a node with low bandwidth can become a bottleneck. 

One method to avoid overloading the entire network with 

messages is to assign each request with a time-to-live (Time – to 

– level, TTL) parameter. The TTL parameter specifies the 

maximum number of hops over which a request can be 
forwarded. In a typical search, the initial value for TTL is 

typically 5-7, which decreases each time the request is 

forwarded. When the TTL becomes 0, the message is no longer 

transmitted. BFS guarantees a high level of match quality 

through a large number of messages. 

Random Wide Primary Search Method 

Random wide primary search method (Random Breadth 

First Search, RBFS) has been proposed as an improvement on 

the "naive" BFS approach. In the RBFS method (Fig. 2.2.3), the 

node q forwards the search prescription only to a randomly 

selected part of the network nodes. Which part of the nodes is 

the parameter of the RBFS method. 

 

Figure 2.2.3 – RBFS method 

The advantage of RBFS is that global information about 

the state of the network's content is not required; the node can 

get local solutions as fast as it needs to. On the other hand, this 

method is probabilistic. Therefore, some large network segments 
may not be reachable. 

 Intelligent search engine 

Intelligent search engine (Intelligent Search mechanism, 

ISM) is a new search method in P2P networks (Fig. 2.2.4). 

Improving the speed and efficiency of information retrieval using 
this method is achieved by minimizing the cost of 

communications, that is, the number of messages transmitted 
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between nodes, and minimizing the number of nodes that are 
polled for each search request. To achieve this, for each query, 

only those nodes that best match the query are evaluated. 

 

Figure 2.2.4 – ISM method 

An intelligent search engine consists of two components – 

a profile (profile) and a way to rank it, the so-called relevance 
rank. Each network node builds an information profile for each 

of the neighboring nodes. The profile contains the latest 

responses from each node. Relevance Rank ranks node profiles 

to select those neighbors that will produce the most relevant 

documents for a query. 

The profile mechanism is used to store the latest queries as 
well as the quantitative characteristics of the search results. 

When implementing the ISM model, a single request stack 

of size is used ( )O TN , which stores T requests per N node. As 

soon as the stack is full, the "last least used" (Least Recently 

Used, LRU) to save recent requests. Relevance Rank function 

(Relevance Rank, RR) is used by a node 
lP to perform an online 

classification of its neighbors to determine which ones should be 

polled first on request q . To calculate the relevance rank of each 

node ,iP   
lP compares q with all requests in the profile structure, 

for which the list of answers to previous requests is known, and 

calculates ( , )iRR P q : 

( , ) ( , ) ( , ).i j i j

j Q

RR P q Sim q q S P q


  
      (2.2.1) 
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In this formula Q , the set of requests to which the node 

had an answer ,iP  ( , )i jS P q  the number of results returned by 

the node 
iP for the query ,jq , and the metric Sim is calculated 

according to the cosine rule, similar to that considered in the 

vector-spatial search model: 

( , ) .
j

j

j

Qsim



q q

q q
q q

                      

(2.2.2) 

RR provides a higher rank node that returns more results. 
In addition, a parameter is used , that allows you to increase 

the weight of requests that are most similar to the original one. 

In the case where is  large, queries with high similarity 

( , )jQsim q q dominate the above formula. Consider the situation 

where a node 
1P matches queries 

1q and 
2q similarity values for 

query q : 
1( , ) 0.5Qsim q q  and 

2( , ) 0.1Qsim q q  , and a node 
2P

matches queries 
3q and 

4q values 
3( , ) 0.4Qsim q q  and 

4( , ) 0.3Qsim q q  . If you choose 10, then 
1( , )Qsim q q

dominates, since
10 10 10 100.5 0.1 0.4 0.3 .       

However, for 1 all queries weigh the same, and 
2P gives 

a higher relevance. When 0 only counts the number of 

results returned by each node. 

ISM method works effectively in networks where the nodes 

contain some specialized information. In particular, a study of 

the Gnutella network shows that the quality of the search is very 
dependent on the “environment” of the node from which the 

request is made. Another problem with the ISM method is that 

paging messages can loop and therefore fail to reach certain 

parts of the network. To solve this problem, the following 

approach was proposed. A small random subset of nodes was 
selected (an additional random node was selected in the 

experiment) and added to the set of relevant nodes for each 

query. As a result, the ISM mechanism began to cover a large 

part of the network. 
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Methods of "most results by past heuristics" 

In the past heuristic majority (> RES) method (Figure 

2.2.5), each node forwarded a query to a subset of its nodes 

based on some generalized statistics. 

 

 

Figure 2.2.5 – Method > RES 

A request in the > RES method is satisfactory if Z or more 

results are returned ( Z is some constant). In the > RES method, 

the node q forwards requests to k the nodes that produced the 

highest results for the most recent m requests. In their 

experiments k it varied from 1 to 10 and in this way the > RES 

method varied from BFS to a Depth – first – search approach. 

The > RES method is similar to the ISM method discussed, but 
uses simpler node information. Its main drawback compared to 

ISM is the lack of analysis of the parameters of the nodes whose 

content is associated with the request. Therefore, the > RES 

method is characterized more as a quantitative rather than a 

qualitative approach. We know from experience that > RES is 

good in that it routes requests to large network segments (which 
may also contain more relevant responses). It also captures 

neighbors that are less congested, starting with those that 

typically return more results. 

Method of "random walks" 

The key idea of the random walk algorithm (Random 
walkers Algorithm, RWA) is that each node randomly forwards a 

request message, called "sending" to one of its nodes. To reduce 

the time needed to get results, the idea of a single "batch" is 

extended to " k -batch", where k is the number of independent 
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bursts sequentially launched from the search node. It is 

expected that " k -parcels" after T the steps will achieve the same 

results as one parcel per kT steps. This algorithm is similar to 

the RBFS method, but in RBFS each node forwards a part 

request message from its neighbors. In addition, RBFS assumes 

an exponential increase in transmitted messages, while the 

random walk method assumes a linear increase. Both RBFS and 

RWA methods do not use any explicit rules to direct the search 
query to the most relevant content. 

Another technique similar to RWA is "adaptive probabilistic 

search" (Adaptive Probabilistic Search, APS). In APS, each node 

deploys a local index on its resources containing conditional 

probabilities for each neighbor that can be selected for the next 
hop for a future request. The main difference from RWA in this 

case is that in APS the node uses feedback from previous 

searches (in the form of conditional probabilities) instead of 

completely random transitions. Therefore, the APS method often 

gives better results than RWA. 

Another algorithm developed at the University of California, 
based on the random walk method, uses the principle of the link 

percolation threshold, that is, the threshold for leaking or 

leaking links between closely connected nodes in the network. At 

the link percolation stage, the request goes to one of the base 

servers, which are connected to each other by powerful 

communication channels. It turned out that a full-fledged search 
process can be carried out "locally", that is, when polling only 

neighboring servers. With this approach, each request generates 

relatively little traffic. 

There are many areas where P2P technology is successfully 

applied, for example, parallel programming, data caching, data 
backup. 

Due to such characteristics as survivability, fault 

tolerance, and the ability to self-develop, peer-to-peer networks 

are increasingly used in production and organization 

management systems (for example, P2P technology is currently 

used in the US State Department). In this case, the possible 
failure of some nodes or servers does not significantly affect the 

manageability of the entire system. The Domain Name System 

(DNS) on the Internet is also effectively a peer-to-peer data 

exchange network. 
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The implementation of P2P technology is also the currently 
popular system of distributed computing GRID. Another example 

of distributed computing is the distributed project.net, whose 

members are engaged in the legal cracking of cryptographic 

ciphers in order to test their reliability. 

2.3. Rank characteristics  

Ranking is the process by which a search engine arranges 

search results in a certain order based on the principle of the 

greatest relevance to a particular query. Thus, the presentation 

of search results depends on the ranking algorithm that is used 
in the search engine. 

As a result of the search, the user can get a large list of 

relevant documents. Sorting this list in such a way that the most 

important documents for the user are at the beginning, in 

information retrieval technologies, is commonly called the 
ranking of information retrieval system responses. 

Ranking search results by relevance level is not possible for 

all search models (for example, it is impossible for a Boolean 

model). 

A promising approach to ranking is the use of multi-profile 

scales formed on the basis of metadata, network properties, and 
user data. 

For example, the implementation of story chains in 

thematic information arrays and their weighting are considered 

as one of the ranking algorithms.  The ranking of text and 

hypertext documents has significant differences. Ranking of text 
documents can be carried out according to the level of relevance 

and other parameters, including those extracted from texts. 

The ranking of hypertext documents is also possible 

according to the properties determined by the network structure, 

hyperlinks. 

The Internet uses the analysis of the topology of the 
network formed by documents and the corresponding hyperlinks 

to determine the authority of a web page as a source of 

information or an intermediary. Two link-based web page 

ranking algorithms, HITS (hyperlink induced topic search) and 

PageRank, were developed in 1996 at IBM by J. Kleinberg [94] 
and at Stanford University by S. Brin and L. Page [74]. 
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Both algorithms are designed to solve 

the "redundancy problem" inherent in wide 
queries, increasing the accuracy of search 

results based on complex network analysis 

methods.  

2.3.1.HITS algorithm  

HITS (Hyperlink Induced Topic 

Search) algorithm proposed by J. _ 

Kleinberg, provides a selection from the 

information array of the best "authors" 

(primary sources to which links will be 
entered) and "intermediaries" (documents 

from which citations come). It is clear that 

a page is a good intermediary if it contains 

links to valuable primary sources, and vice 

versa, a page is a good author if it is 

mentioned by good intermediaries. 

For each document jd  ( 1,...,j N ) 

recursively calculates its importance as an 

author ( )ja d  and an intermediary ( )jh d

according to the formulas: 

( ) ( ), ( ) ( ).
N N

j i j i

i j j i

a d h d h d a d
 

       

(2.3.1) 

If we introduce the concept of an incidence matrix A , the 

element of which ija  equals one when the document 
id contains a 

document reference jd , and zero otherwise, then the HITS 

algorithm ensures that the most authoritative documents 

(authors or resellers) are selected. These documents correspond 

Kleinberg JM 
Authoritative 
sources in a hyper-

link environment. 
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to the eigenvectors of matrices 
T

AA and 
T

A A with the largest 

moduli of eigenvalues (here 
T

A , the transposed matrix A ). 

The algorithm for calculating the HITS ranks leads to an 

increase in the ranks of documents with an increase in the 
number and degree of relatedness of documents of the 

corresponding community. In this case, the results of issuing an 

information retrieval system using the HITS algorithm may 

include a large number of documents on topics other than the 

information needs of the user, i.e. some of the output results 
may deviate from the dominant topic, so-called topic drift 

occurs. 

To solve this problem, the PHITS algorithm was proposed 

as an alternative to the standard HITS algorithm. Within the 

framework of this algorithm, it is assumed: D a set of citing 

documents, C  a set of references, Z a set of classes 

(documents that are close by some criterion) into which 

documents are divided. It is also assumed that the event d D  

(that the document chosen at random is document d ) occurs 

with probability ( ).P d  

Conditional probabilities ( | )P c z (probability that a 

reference from a class z
 
is c ) and ( | )P z d (the probability that 

the selected document d belongs to the class z ) are used to 

describe the dependencies between the presence of the link 

c C , the factor z Z and the document d D . 

The likelihood function is estimated: 

,

,

( , ) ( , )

( ) ( | ),

c C d D

c C d D

L D C P d c

P d P c d

 

 

 






 (2.3.2) 

g de 

( | ) ( | ) ( | ).
z Z

P c d P c z P z d



               

(2.3.3) 

The goal of the PHITS algorithm is to fit ( )P z , ( | )P c z , 

( | )P d z to maximize ( , )L D C . 
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After that: 

( | )P c z – ranks of authors; 

( | )P d z – ranks of intermediaries. 

To calculate the ranks, you must 

specify the number of factors in Z , and 

then ( | )P c z it will characterize the quality 

of the page as an author in the context of 

the topic z . The disadvantages of the 

method include the fact that the iterative process most often 

stops not at the absolute, but at the local maximum of the 

likelihood function L . However, in situations where there is no 

clear dominance of the query subject in the set of found web 

pages, PHITS outperforms the HITS algorithm.  

2.3.2. PageRank Algorithm  

PageRank algorithm was invented by the founders of 

Google to rank web pages. It was named after one of its 

inventors, Larry Page). 

The main idea of this algorithm can be described in the 

following words: the significance (rank) of a page is the higher, 

the more links to it from other significant pages. Those. 
PageRank calculates the probability that a person randomly 

following links will reach a certain page. The more links pointing 

to a given page from other popular pages, the more likely the 

experimenter will stumble upon it purely by chance. In our 

terminology, a page is a network node, and a link to a page is a 
directed link. 

PageRank algorithm is close in ideology to the literary 

citation index, which is calculated for an arbitrary document, 

taking into account the number of links from other documents 

to this document, but at the same time, in PageRank, as in 

HITS, unlike the literary citation index, not all links are 
considered equivalent. 

 

 

The likelihood 

function in this case 

shows how likely it is 

to have links in the 

selected documents. 
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PageRank of a web page is as follows: 

a model is considered – a process in which 

a certain Internet user opens a random web 

page, from which he clicks on a randomly 

selected hyperlink. Then it navigates to 

another web page and activates a random 

hyperlink again, and so on, constantly 

jumping from page to page, never coming 

back. Sometimes he gets bored with such 

wandering, and he again goes to a random 

web page – not by link, but by manually 

typing some URL. In this case, the 

probability that a user surfing the Web will 

go to some particular web page is its rank. 

Obviously, the PageRank of a web page is 

higher the more other pages link to it, and 

the more popular these pages are. 

Let there be n pages  1, ..., ,nD d d

that link to this document (web page A ), 

and ( )C A   the total number of links from a 

web page A to other documents. In accordance with the above 

model of user behavior, some fixed value is determined 
(damping factor) as the probability that the user, when viewing 

some web page from the set D , will go to the page A by a link, 

and not by explicitly typing its URL. Within the framework of the 

model, the probability of this user continuing to surf the web 

from N web pages without using hyperlinks, by manually 

entering the address (URL) from a random page, is 1 (an 

alternative to following hyperlinks). PageRank Index  PR A for a 

page A is considered as the probability that the user will be on 

this page at some random time: 

 
1

( )
( ) (1 ) / .

( )

n
i

i i

PR d
PR A N

C d

   
           

(2.3.4) 

Authors 

PageRank 

 

Larry Page 

 

Sergey Brin 
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With this formula, the page index is easily calculated by a 
simple iterative algorithm. In practice, up to 30 iteration steps 

are used to achieve sustainable results. 

Despite the differences between HITS and PageRank, these 

algorithms have in common that the authority (weight) of a node 

depends on the weight of other nodes, and the level of the 
"intermediary" depends on how authoritative the nodes to which 

it refers. 

The calculation of the authority of individual documents is 

now widely used in applications such as determining the order 

in which documents are scanned on the web by search engine 

robots, ranking search results, generating thematic overviews, 
and etc. 

Let's illustrate the above with an example. Consider a small 

part of the network consisting of nodes A  with rank 0.5Ar  , B

with rank 0.3Br  and determine the rank of node C – see Figure 

2.3.1. 

 

Figure. 2.3.1 – Network fragment 

Each of the network nodes A and B refers to the node C 

and for them the rank is already known. Node A refers to three 

more nodes, and node B to two more nodes. To calculate the 
rank of node C, the ranks of each node that links to C are 

divided by the total number of links for that node, after which 

the resulting values are added. 



 74 
 

1 1
0.225.

4 3
C A Br r r      (2.3.5) 

In this example, for all nodes that point to C, the rank has 

already been calculated. But it is impossible to calculate the 

rank of a node until the ranks of the nodes that link to it are 

known, and these ranks can only be calculated by knowing the 
ranks of the nodes that link to them. So how do you calculate 

the rank value for a set of nodes whose ranks are not yet 

known? The solution is to give all nodes an arbitrary initial rank 

and run several iterations. 

In general, we can write the following formula for  1n  the 

-th iteration step: 

   

 

1 1
,

n n

i j

j E i j

r r
kout





 
   

 
  (2.3.6) 

where is the summation over  j E i
 

means the summation 

over all nodes that have a link to i the -th node, and jkout is the 

number of outgoing links for node j . In matrix form (2.3.6) is 

written as follows: 

   1n nT T
 r r H , (2.3.7) 

Where
ij ij ij

j

H A A 
 

is the normalized incidence matrix and A is 

the network incidence matrix. 

For the iterative process (2.3.7), a number of questions 
arise, namely: 

– Does this process converge? 

– What properties must the matrix have H in order for the 

process to converge? 

– Does the final vector depend 
 

r on the initial conditions? 
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Let's look at two simple examples. First: 

 

 

Figure. 2.3.2 – Example 1 

After iterations (2.3.7) we get: 

Iteration 

Node Rank 

0 1 2 3 

1 1 0 0 0 

2 0 1 0 0 

The result is clearly not as expected. 

Let's look at another similar example. 

 

 

Figure. 2.3.3 – Example 2 

Here we get the following table: 

From the above table it can be seen that the convergence 

of the process is not observed. Many more counterexamples can 
be given, showing the limitations of formula (2.3.8). On the other 

hand, one can see that (2.3.8) resembles “ power method ” to 

calculate the matrix eigenvector H (corresponding to the 
eigenvalue – one) applied to Markov chains with transition 

probability matrix P H . In this case, we are talking about the 

“left” eigenvector. And since the theory of Markov chains is very 

well studied, we can immediately answer the question of what 

properties the transition probability matrix should satisfy P so 

that the process converges, does not depend on the initial 

conditions, etc. 

Iteration 
Node rank 

0 1 2 3 

1 1 0 1 0 

2 0 1 0 1 

1 2 

1 2 
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The transition probability matrix must be stochastic, 
irreducible and non-periodic. The first condition is satisfied by 

passing to the matrix S . 

1
,T

n

 
    

 
S H a e  (2.3.8) 

where 1ia  if i no link comes out of the -th node (the so-called “ 

dangling node ”) and is equal to zero in the other case, e is a 

vector consisting of n  units, n  is the number of nodes in the 

network. And to satisfy the remaining two conditions, we write 

the matrix G : 

   

  

1
1

1
1

T

T

n

n

       

        

G S e e

H a e e

 

   ,

 
 

(2.3.9) 

where is  the so-called damping factor. It means that the user 

will continue to follow the links available on the current page 

with a probability  , which is in the range from zero to one. 

Usually accepted 0.85 . So, our task is reduced to calculating 

the left eigenvector of the Google matrix G . 

Consider the first counterexample. For him: 

0 1

0 0

 
  
 

H , 
0

1

 
  
 

a , 
1

1

 
  
 

e . (2.3.10) 

From (2.3.10) we obtain a matrix G (for definiteness, we set 

0.85 ). 

0.075 0.925

0.5 0.5

 
  
 

G . 
(2.3.11) 

Find the left eigenvalues of the matrix G . 
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It can be seen that the second node is more significant 

than the first, which is fully consistent with the intuitive idea. 

Because the first node refers to the second one (see Figure 
2.3.2). In exactly the same way, for the second counterexample 

we obtain the following ranks: 

 05 0.5T r . (2.3.13) 

As it should be (see Fig. 2.3.3), we got equivalent values for 

the ranks. 

 Consider a more complex example of the network shown 

in Fig. 2.3.4. 

 

Figure. 2.3.4 – Network example 

Let's write a matrix H and a vector a for this network. 

 

 0.351 0.649T r . (2.3.12) 
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0 1 2 1 2 0 0 0

0 0 0 0 0 0

1 3 1 3 0 0 1 3 0

0 0 0 0 1 2 1 2

0 0 0 1 2 0 1 2

0 0 0 1 0 0

 
 
 
 

  
 
 
 
 

H . 

(2.3.14) 

 0 1 0 0 0 0T a . (2.3.15) 

Let's find the matrix G by taking 0.85 :  

0.025 0.45 0.45 0.025 0.025 0.025

0.167 0.167 0.167 0.167 0.167 0.167

0.308 0.308 0.025 0.025 0.308 0.025

0.025 0.025 0.025 0.025 0.45 0.45

0.025 0.025 0.025 0.45 0.025 0.45

0.025 0.025 0.025 0.875 0.025 0.025

 
 
 
 

  
 
 
 
 
 

G

. 

(2.3.16) 

Find the left eigenvector (one for the eigenvalue): 

 0.052 0.074 0.057 0.349 0.2 0.269T r

. 
(2.3.17) 

For clarity, let's renumber the nodes in accordance with 

their ranks – the first number will be assigned to the node with 

the highest rank – see fig. 2.3.5. 

It can be noted that without calculations (intuitively), even 

such a simple network is almost impossible to rank. 
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Figure. 2.3.5 – Network with ranked nodes 

2.3.3. Salsa algorithm 

Algorithm ranking Salsa (Stochastic 

Approach for Link-Structure Analysis – 

Stochastic Algorithm  Analysis structures 

ties) was suggested Sh. Moran  and  R. 

Lempel as a kind of symbiosis of the 
PageRank and HITS algorithms, which 

makes it possible to reduce the 

consequences of the formation of the so-

called TKC (Tightly-Knit Community) – 

closely connected communities. This effect 
consists in the presence in the issuance of 

the search system of many documents that 

are closely related to each other, the subject matter of which is 

somewhat different from the information needs of the user, i.e. 

there is a “topic draft” effect when displaying results, some of 

which may deviate from the dominant topic.  

As in the PageRank method, in the case of Salsa, a random 

walk model of the user across the network (web graph) is 

assumed, but the presence of two-way "surfing" is assumed. 

According to the Salsa algorithm, a simple two-step procedure is 

performed a predetermined number of times: 

1. From an arbitrary node v , the user randomly returns to 

the node u , randomly selected from the set of nodes referring to 

Lempel R. and 
Moran S. The 
stochastic approach 
for link-structure 
analysis (SALSA) 
and the TKC effect. 
In Proc. of the 9th 
International WWW 
Conference, 
Amsterdam, The 
Netherlands, 2000. 
– pp. 387–401. 
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v . The choice v is made randomly (the nodes v and u belong to 

the network). 

A transition is made at random w from the node to the 

node u if there is a connection ( , )u w . 

A web graph G (Fig. 2.3.6 a) can be converted into a 

bipartite undirected graph bipG , (Fig. 2.3.6 b) and defined as a 

set ( , , )bip h aG V V E , where h denotes intermediaries, 
hV - a set 

of intermediary nodes (those from which links come), a – 

authors, 
aV – set of author nodes (those to which links lead). 

 

a b 

Figure 2.3.6 – Salsa : bipartite graph construction 

It should be noted that the same nodes can be both 
authors and intermediaries at the same time. 

Each non-isolated node s G is represented by bipG one or 

two nodes 
hs and 

as . In this bipartite graph, Salsa implements 

two different random transitions. With each transition, it is 

possible to “visit” nodes from only one of the two parts of the 

graph bipG . 
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Each path of length two in bipG represents a bypass of one 

hyperlink (when passing from the share of intermediaries to the 

share of authors in bipG ), and a retreat along the hyperlink 

(when passing in the opposite direction). This movement in the 

opposite direction resembles the salsa dance, which is 

associated with the name of this algorithm. 

Since topic-related proxies and authors t must be explicit 

in bipG (accessible from many nodes via direct links or shortcuts), 

it is assumed that 
aV topic-related proxies t and proxies from 

hV

will be the most frequently visited on random "wanderings" of 
users. 

Salsa algorithm explores two different Markov chains that 

are associated with these random walks: the author-side chain 

bipG (author chain), and the broker-side chain bipG . 

This approach allows us to introduce two stochastic 

transition matrices for Markov chains, which are defined as 

follows: the incidence matrix of the W directed graph is 

constructed G . Denote as 
rW the matrix obtained by dividing 

each nonzero element W by the sum of the values of the 

corresponding row, and denote by 
cW the matrix obtained by 

dividing each nonzero element W by the sum of the elements in 

the corresponding column. Then, the matrix H corresponding to 

the mediators will consist of non-zero rows and columns 
T

r cW W , 

and the matrix of authors A , respectively, will consist of non-

zero rows and columns 
T

c rW W . Within the framework of the 

Salsa algorithm, the rows and columns of matrices and which 

consist entirely of zeros ,H are ignored A , since, by definition, 

all nodes bipG have at least one connection. As a result, matrices 

Aand H are used to calculate ranks in the same way as in the 

HITS algorithm. 

Converging during the iterative process, the probability of 

transition to the node v as the author has a very simple form: 

1 ( )v c InDegree v   ,        (2.3.18)  
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and the probability of returning to the node u as an 

intermediary: 

2 ( )u c OutDegree u   ,          (2.3.19)  

where 
1c and 

2c are some constants, and InDegree and 

OutDegreeare the number of outgoing and incoming links, 

respectively. 

R. Lempel and S. Moran demonstrated that the Salsa 

algorithm is less sensitive to the effect of closely related 

communities than HITS, but under the condition that links that 

are not related to the topic under study are manually removed 
from the documents. This requirement in practice leads to high 

costs, as a result of which the authors are not yet aware of cases 

of using this ranking algorithm in real systems. 

Many of the real complex networks are content, i.e. those 

whose nodes store text documents (web pages, blog posts, 

official documents, etc.). Therefore, let us dwell in detail on the 
methods of grouping, namely, on the problems of their 

classification and clustering. These methods allow you to 

combine various network nodes into categories, which 

significantly affects the reduction in the number of different 

meaningful objects in networks. In what follows, we will refer to 
all objects as documents, and the object parameters as terms, 

which does not limit the generality of subsequent conclusions. 

2.4. Classification 

2.4.1. Formal description of the classification  

Let 1 | |{ , ..., }DD d d - a set of objects (network nodes or, for 

example, their content elements – documents), 1 | |{ , ..., }CC c c - 

a set of categories,  - an objective function that ,i jd c 

determines by a pair whether a document belongs 
id to a 

category jc (1 or True) or not (0 or False). The task of 

classification is to construct a function ' that is as close as 

possible to .  

Machine learning methods that are used for classification 
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provide for a collection of objects previously classified by experts, 
i.e. those for which the value of the objective function is already 

known exactly. In order to evaluate its efficiency after building 

the classifier, this collection is divided into two parts, not 

necessarily of equal size: 

1. Training (training-and-validation, TV) collection. The 

classifier ' is built on the basis of the characteristics of these 

objects. 

2. Test (test, Te) collection. It checks the quality of the 

classification. Objects from Te should not be used in the process 

of building a classifier. 

The classification under consideration is called clear binary, 

i.e. it is assumed that there are only two categories that do not 

intersect. Many tasks are reduced to such a classification, for 

example, classification according to a set of categories 

1 | |{ , ..., }CC c c is divided into |c| binary classifications by sets 

{ , }i ic c . 

Ranking is often used, in which the set of objective 

function values is the segment [0, 1]. When ranking an object, it 

can belong not only to one, but to several categories at once with 

different degrees of membership, i.e. categories may overlap. 

2.4.2. Ranking and clear classification 

Suppose that for each category 
ic a function is built 

iCSV . 

Consider the problem of moving from a ranking function to 

an accurate classification. The easiest way is ic to select a limit 

value (threshold) for each category 
i . If ( ) ,i iCSV d   then the 

document d matches the category 
ic . Another approach: for 

each document, d choose k the closest categories, i.e. k

categories on which ( )iCSV d they take the highest values. 

To select a threshold value: 

- proportional method. The study collection is divided into 

two parts. For each category ic on one part of the training 

collection, it is calculated which part of the documents 

belongs to it. The threshold values are chosen so that on 
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the other part of the training collection the number of 

remaining documents assigned to 
ic is the same. 

- Method of k nearest categories. Each document 
id is 

considered to belong to the k closest categories and a 

threshold value is selected accordingly. 

 

2.4.3. A measure of the 
proximity of an object and 
category 

In this method, the classifier rule 

is the dot product. Let each category 

iC correspond to a vector

1( , ..., ),i iNc ciC  where N is the 

dimension of the space of terms. The 

following formula is used as a 
classifier rule: 

1

( ) .
N

i i ij j

j

CSV d c d


  d C

                    

(2.4.1) 

Normalization is usually carried out in such a way that the 

final formula for ( )iCSV d is a normalized scalar product – the 

cosine of the angle between the category vector 
ic  and a vector 

of weight values of the terms included in the document d - 

1( , ..., )Nd dd : 

( ) .
| | | |

iCSV d





i

i

d C

d C
                              (2.4.2) 

Vector coordinates iC  are determined in the course of 

training, which is carried out for each category independently of 

the others. 

CSV (Categorization 

Status Value – 

classification status) – 

a function that maps a 
set of documents D to 

the segment [0; 1], 
which specifies the 

degree of belonging of 

the document to the 

category. 



 85 
 

2.4.4. Rocchio Method 

Some classifiers use a so-called profile 

to define a category. A profile is a list of 

weighted terms, the presence or absence of 

which makes it possible to most accurately 
distinguish a particular category from other 

categories. These classification methods 

include the Rocchio method, which refers to 

linear classifiers in which each document is 

represented as a vector of weighted terms. The category profile i
will be considered as a vector 1( , ..., )i Nic ciC (N is the number 

of terms in the dictionary), the values of the elements of which, 

kic within the Rocchio method, are calculated by the formula: 

,
| | | |

j i j i

ki kj kj

d POS d NEGi i

c w w
POS NEG 

    
 

 (2.4.3) 

where kjw is the weight of the term 
kt in the document jd

(calculated, for example, according to the TF IDF principle),

{ | ( , ) 1}i j j iPOS d d c  
 

and { | ( , ) 0}.i j j iNEG d d c   In this 

formula,  and  are control parameters that characterize the 

significance of positive and negative examples. For example, if 
= 1 and  = 0, 

iC will be the center of mass of all documents 

belonging to the corresponding category. 

The function ( )iCSV d is defined either as the reciprocal of 

the distance from the vector of the weight values of the terms 

included in the document d to the category profile 
ii C , or 

as the scalar product of these vectors. The Rocchio method gives 

satisfactory results when documents from the same category are 

close to each other in distance. 

2.4.5. Linear regression method 

Regression analysis is used when the features of categories 

can be expressed quantitatively as some combination of vectors 

of weight values of terms included in documents from the 

Profile (profile) – a 

prototype of a 

document, category 

or array of 

documents, most 

often a set of 

weighted terms 
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training collection. The resulting combination can be used to 
determine the category to which the new document will belong. 

In the simplest case, standard statistical methods such as linear 

regression are used to solve this problem. 

The regression method is a variant of linear classification 

trained on the entire collection at once. When applying 

regression analysis to text classification, a set of terms ( F ) and  

set of categories ( C ). In this case, the training collection of 

documents is associated with two matrices: 

- the matrix of documents D in the training collection, 

where each row is a document and each column is – term, 

number of lines N – number of documents in the training 

collection; 

- response matrix , |i joO , in which the row i corresponds 

to the document ( 1, ...,i N ), the column j corresponds 

to the category ( 1, ...,j K ), and ,i jo to the value 

( )j iCSV d . 

The regression method is based on the algorithm for 

finding the matrix of rules M , which minimizes the value of the 

norm of the matrix 
F

MD - O , that is: 

arg min
F

M

M  MD - O .                 (2.4.4) 

Recall that in linear algebra, the norm of a matrix is a 

function that assigns a numerical characteristic to a matrix. The 

matrix norm reflects the order of magnitude of the matrix 

elements. In this case, it is recommended to use the Frobenius 

norm .
F

, equal to the square root of the sum of the squares 

of all elements of the corresponding matrix: 

2

,

.ijF
i j

A a 
                                

(2.4.5) 

The element ijm of the required matrix M will reflect the 

degree of membership i of the -th term j of the -th category. 
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2.4.6. DNF classifier 

The DNF classifier consists of a set of rules, the conditions 

of which are specified by some DNF formula (DNF – disjunctive 

normal form), which is a disjunction of several expressions, the 

elements of which are connected by a certain number (possibly 

zero) of conjunctions. In this case, a document is categorized if it 
satisfies this formula, i.e. satisfies at least one term of the 

disjunction. 

At the initial stage ic , for each category that consists of 

documents, 1 | |{ , ..., },
i

i i

cd d the following formula is determined: 

IF 1( )ix d  OR 2( )ix d  OR... OR | |( )
i

i

cx d , THEN 
ic . 

A classifier based on such a set of formulas works 
absolutely correctly on the training collection, but, firstly, it 

cannot work on other documents, and secondly, it is 

inconvenient to use such a classifier due to the large number of 

rules. In actually working DNF classifiers, there is a transition 

from documents to sets of terms, which are determined based on 

the analysis of the content of documents belonging to one 
category or another. In addition, a number of simplifications are 

carried out related to the combination or removal of certain 

conditions. Let's take a small example: 

IF ((coffee & espresso) OR 

  (coffee & milk) OR 

  (tea & glass & lemon) OR 

  (coffee & cup & grains)) 

TO Drink 

AKA Drink 

Such actions improve the classification completeness index, but 

the accuracy can be significantly affected even on the training 

collection. 

2.4.7. Bayesian logistic regression 

In the Bayesian logistic regression model, the conditional 

probability of a document belonging D to the class is considered 
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C : ( | ).p C D  

It is assumed that the document is determined by the terms 

included in it, i.e. within the framework of this model, the 

document is a vector: 1( , ..., )ND w w , where
iw  is the weight of 

the term i , and N  is the size of the dictionary. 

The Bayesian logistic regression model is given by the 

formula: 

 
1

( | ) ( ) ( )
N

i i

i

p C D D w


       ,            (2.4.6) 

where {0,1}C , 1{ , ..., }N  
 

is the vector of model 

parameters, and  is the logistic function, which is 

recommended to use: 

1
( )

1 exp( )
x

x


 
 .                                 (2.4.7) 

The 
i main idea of the approach is to use the previous 

distribution of the parameter vector,  in which each specific 

value 
i can take a value close to 0 with a high probability. 

i

independent. 

2.4.8. Naive Bayes Model 

Consideration is given to the conditional probability that an 

object belongs to a class C , given that it has the attributes

1, ..., :nF F  

1( | , ..., ).np C F F
                                       

(2.4.8) 

According to Bayes' theorem: 

 1
1

1

( ) ( , ..., | )
( | , ..., ) .

( , ..., )

n
n

n

p C p F F C
p C F F

p F F


     

(2.4.9) 

By definition of conditional probability: 
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1 1

1 2 1

1 2 3 1 2

( | , ..., ) ( ) ( , ..., | )

( ) ( | ) ( , ..., | , )

( ) ( | ) ( | ) ( , ..., | , , ).

n n

n

n

p C F F p C p F F C

p c p F C p F F C F

p c p F C p F C p F F C F F

 

 



 (2.4.10) 

In accordance with the "naive" Bayesian approach, it is 

assumed that the events ,i jF F are independent for any i j : 

( | , ) ( | ).i j ip F C F p F C
                          

(2.4.11) 

Respectively: 

1

1 2

1

( | , ..., )

( ) ( | ) ( | ) ... ( | )

( ) ( | ).

n

n

n

i

i

p C F F

p C p F C p F C F C

p C p F C




   

 

 
(2.4.12) 

Let's move on to the classification of documents. In the case 

of binary classification, the “naive” Bayesian probability of a 

document belonging to a class is determined by the formula: 

( | ) ( | ).i

i

p D C p w C
                    

(2.4.13) 

According to Bayes' theorem: 

( )
( | ) ( | ).

( )

p C
p C D p D C

p D


                  

(2.4.14) 

Let's say classification occurs only in two classes – C and 

C . Then, in accordance with the Bayes formula, we have: 

( )
( | ) ( | );

( )
i

i

p C
p C D p w C

p D
 

      

(2.4.15) 

( )
( | ) ( | ).

( )
i

i

p C
p C D p w C

p D
 

              

(2.4.16) 
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The following ratio of probabilities is considered as a 
criterion for a document to belong to a category: 

( | )( | ) ( )
.

( | ) ( ) ( | )

i

i i

p w Cp C D p C

p C D p C p w C
 

                      

(2.4.17) 

In practice, the logarithm of the ratio of probabilities is 

used: 

( | )( | ) ( )
ln ln ln .

( | ) ( ) ( | )

i

i i

p w Cp C D p C

p C D p C p w C
 

         

(2.4.18) 

If the inequality is true, 
( | )

ln 0,
( | )

p C D

p C D
 then the document 

is considered D to belong to the category C . 

2.4.9. Support vector machine 

Support Vector Machine (Support 
vector Machine, SVM), proposed by 

V.N. Vapnik belongs to the group of 

boundary classification methods. It 

determines the belonging of objects to 

classes using the boundaries of areas. 
Considered, i.e. only over two 

categories c and c (it is taken into 

account that this approach can be 

extended to any finite number of 

categories). In addition, it is assumed 

that each classification object is a 
vector in N -dimensional space. Each 

coordinate of the vector is a certain 

feature, quantitatively the greater, the 

more this feature is expressed in the 

given object. 

 

V.N. Vapnik 

 

SVM – Support Vector 
Machine 

Vapnik V.N. Statistical 

Learning Theory. – NY: 
John Wiley, 1998. 
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It is assumed that there is a 
training collection – it is a set of 

vectors 1{ , ..., } N

nx x R and numbers. 

1{ , ..., } { 1, 1}.ny y   The number 
iy is 

equal to 1 if the corresponding vector 

belongs to 
ix the category c , and – 1 – 

otherwise. 

As shown above, a linear 

classifier is one of the simplest ways 

to solve a classification problem. In this case, a straight line 
(hyperplane in N – dimensional space), separating all points of 

one class from points of another class. If it is possible to find 

such a line, then the classification problem is reduced to 

determining the relative position of the point and the line: if a 

new point lies on one side of the line (hyperplane), then it 

belongs to the class, if on the other, c to the class c . 

Let's formalize this classification: it is necessary to find a 

vector w such that for some limit value b and a new point 
ix the 

following holds:

 
1,  ,

1,  ,

i

i

i

если w x b
y

если w x b

  
 
  

 (2.4.19) 

 

where 
iw x is the scalar product of vectors w and 

ix : 

,

1

.
N

i j i j

j

w x


 w x                (2.4.20) 

The equation 
i b w x describes a hyperplane that 

separates the classes. That is, if the scalar product of the vector 

w is ix not less than the value b , then the new point belongs to 

the first class, if less, to the second. It is known that the vector 

w is perpendicular to the desired dividing line, and the value b
depends on the shortest distance between the dividing line and 

the origin. Obviously, if there is one dividing line, then it is not 

unique. The question arises, which of the lines separates the 

classes best? 

The SVM method is based on the following postulate: the 

best separating line is the one that is as far as possible from the 

 

Class separation direct 
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nearest points of both classes to it. That is, the task of SVM is to 

find a vector wand a number such b that for some 0 (half the 

width  separating surface) was performed: 

1,

1.

i i

i i

b y

b y

      


     





w x

w x

 (2.4.21) 

We then multiply both sides of the inequality by1   and, 

without loss of generality, we choose  equal to one. Thus, for all 

vectors 
ix from the training collection, it will be true: 

1,  если 1,

1, если 1.

i i

i i

w x b y

w x b y

     


     

 (2.4.22) 

Condition 1 1iw x b      

specifies a strip that separates 

classes. The strip boundaries are two 

parallel hyperplanes with direction 

vector w . The points closest to the 

separating hyperplane are located 

exactly on the borders of the strip. 

The wider the bandwidth, the 

more confident the documents can be 
classified, so the SVM method 

assumes that the widest bandwidth is 

the best. 

Let us formulate the conditions for the problem of the 

optimal dividing strip, defined by the inequality: ( ) 1i iy w x b  

(this is how the system of equations is rewritten, based on the 

fact that { 1, 1}iy   ). None of the points in the training sample 

can lie inside this separating band. Under these restrictions 
ix , 

and 
iy are constant, as elements of the training collection, and 

wand b are variables. 

From geometric considerations, it is known that the width of 

 

 

dividing strip 
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the dividing strip is 2 .w Therefore, it is necessary to find such 

values wand b so that the given linear restrictions are satisfied, 

and at the same time the vector norm is as small as possible w , 

that is, it is necessary to minimize: 

2
.w w w                                       (2.4.23) 

This is a well-known quadratic optimization problem under 

linear constraints. 

If we assume that experts may have made mistakes on 

training documents during classification, then it is necessary to 

introduce a set of additional variables 0,i  characterizing the 

magnitude of errors on objects 1{ , ..., }.nx x . This allows us to 

soften the restrictions: 

( ) 1 .i i iy w x b                           (2.4.24)
 

It is assumed that if 0,i  then there is no error on the 

document 
ix . If 1,i  so, there is an error in the document 

ix . If 

0 1,i  then the object falls inside the dividing strip, but 

belongs to its class by the algorithm. 

The problem of finding the optimal separating strip in this 

case can be reformulated as follows: under certain restrictions, 

minimize the sum: 

2
.i

i

w C                                       (2.4.25) 

C factor is a method setting parameter that allows you to 

adjust the relationship between maximizing the width of the 

separating band and minimizing the total error. The above 
problem remains a quadratic programming problem, which can 

be rewritten in the following form: 

2

min;
2

( ) 1, 1, ..., .

i

i

i i i

w
C

y w x b i n


 




    





 (2.4.26) 
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According to the well-known Kuhn-Tucker theorem, such a 
problem is equivalent to the dual problem of finding the saddle 

point of the Lagrange function: 

,

1

2

( ( ) 1) min max;

0, 0, 1, ..., .

i

i

i i i i
w b

i

i i

w w C

y w x b

i n


  




     



  









 

 

 (2.4.27) _ 

A necessary condition for the Lagrange method is the 

equality to zero of the derivatives of the Lagrangian with respect 

to the variables wand b , whence we obtain: 

1

,i i i

i

w y x


                                    (2.4.28) 

those. the desired vector is a linear combination of training 

vectors for which 0i  . If 0i  , then the training collection 

document is called a support vector. 

Thus, the equation of the dividing plane has the form: 

1

0i i i

i

y x x b


   .                            (2.4.29) 

Equating the derivative of the Lagrangian with respect to b
zero, we obtain: 

1

0.i i

i

y


                                        (2.4.3 0) 

Substituting the last expression and the expression for w
into the Lagrangian, we obtain an equivalent quadratic 

programming problem containing only dual variables: 
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,

1

1
( ) min;

2

0;

0, 1, ..., .

i i j i j i j

i i j

i i

i

i

y y x x

y

C i n




  









  


 




  





  (2.4.31) 

At the same time, it is very important that the objective 

function does not depend on specific values 
ix , but on the scalar 

products between them. 

It should be noted that the objective function is convex, so 

any of its local minimum is global. 

The separating stripe classification method has two 
disadvantages: 

- when searching for a dividing strip, only boundary points 

are important; 

- in many cases it is not possible to find an optimal 

separating band. 

To improve the method, the idea of extended space is 

applied, for which: 

1. of vectors to a new, extended space x is selected ( )x . 

2. A new dot product function is automatically applied, 

which is used when solving a quadratic programming 

problem, the so-called kernel function as a function :

( , ) ( ) ( ).K x y x y     

Here is an example of a kernel function that maps a two-
dimensional space into a three-dimensional one: 

 2 2

1 2 1 2 1 2( ) ( , ) , , 2 .x x x x x x x  
 

Then the core of the function will be: 

 
22 2 2 2

1 1 2 2 1 2 1 2( , ) ( ) ( ) 2 , .K x y x y x y x y x x y y x y        
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In practice, one usually chooses not a mapping ( )x , but a 

function right away ( , )K x y , which could be an inner product for 

some mapping ( )x . 

 The kernel function is the main tuning parameter of the 
support vector machine. 

3. We find a separating hyperplane in the new space: using 

the function, ( , )K x y a new matrix of coefficients for the 

optimization problem is established. In this case, i jx x

the value is substituted ( , )i jK x x , and a new 

optimization problem is solved. 

4. Having found wand b , we obtain a surface that 

classifies ( )w x b  in a new, expanded space. 

Let us give a more rigorous definition of a kernel function. A 

function :K X X R  is called a kernel if it can be represented 

in the form ( , ) ( ) ( )K x y x y   under some mapping : ,X H

where is H  the space with the scalar product. 

Not every function can be a kernel, but the class of 

admissible kernels is quite wide. Mercer's theorem is known that 

a function ( , )K x y is a kernel if and only if it is symmetric and 

non-negatively defined, i.e. when ( , ) ( ) ( ) 0
X X

K x y g x g y dxdy   for 

any function : .g X R
 

Let's consider some properties of kernel functions that allow 

us to build them in practical problems: 

1. Any scalar product is a kernel. 

2. The identical unit ( ( , ) 1K x y  ) is the kernel. 

3. The product of kernels is a kernel. 

4. For any function, : X R the product 

( , ) ( ) ( )K x y x y   is the kernel.  

5. A linear combination of kernels with non-negative 

coefficients is a kernel. 
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6. The composition of an arbitrary function and a kernel 

 0( , ) ( ), ( )K x y K x y   is a kernel. 

7. If :s X X R  a symmetric integrable function, then 

( , ) ( , ) ( , )
X

K x y s x z s y z dz  is a kernel. 

8. The limit of a locally uniformly convergent sequence of 

kernels is a kernel. 

9. The composition of an arbitrary kernel 
0K and an 

arbitrary function :f R R representable as a 

convergent power series with non-negative coefficients 

 0( , ) ( , )K x y f K x y is a kernel. In particular, kernels 

are functions of ( ) exp( )f z z and ( ) 1 (1 )f z z  from 

the kernel. 

For example, in a news content classification system using 
the well-known LibSVM package 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm), it is recommended 

to use the radial basis function as a kernel function: 

2
( , ) exp( ),K x y x y                           (2.4.3 2) 

where  is a custom parameter. 

Consider a clear example of the transition to an extended 

space, shown in Fig. 2.4.1. Apparently, round and square figures 

are not separated by a linear stripe. If, on the other hand, we 

“bend” the space, going to the third dimension, then these 
figures can be divided by a plane that cuts off part of the surface 

with square points. Thus, by bending the space using the 

mapping ( )x , one can find a separating hyperplane. 

The SVM method has the following advantages: 

 outperforms other methods on tests with document 
arrays; 

 when choosing different cores, it allows you to 
emulate other approaches. For example, a large class 

of neural networks can be represented using SVMs 
with specific cores; 
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 the final rule is chosen not with the help of some 
heuristics, but by optimizing some objective function. 

 

Figure. 2.4.1 – Example of transition to extended space 

The disadvantages include: 

- few parameters to tune: after the kernel is fixed, the only 

parameter that varies is the error rate C ; 

- there are no clear criteria for choosing a core; 

- rather slow learning of the classification system. 

2.5. Clustering _ 

All the classical information retrieval models discussed 
above have a common drawback associated with large 

dimensions. To ensure efficient work, it is necessary to group 

both terms and thematically similar documents. Only in this 

case can the processing of modern information arrays in real 

time be ensured. In this case, two main techniques come to the 

rescue – classification and clustering. Classification is the 
assignment of each document to a certain class with previously 

known features obtained at the stage of system training. The 

number of classes in the classification is strictly limited. 

Clustering – splitting a set of documents into clusters – 

subsets, the semantic parameters of which are not known in 
advance. The number of clusters can be arbitrary or fixed. If 

classification allows attributing to documents certain features 

known in advance, then clustering is a more complex process 

that allows not only the attribution of certain features to 
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documents, but also the identification of these features 
themselves – classes. 

Classification and clustering are two levels of human 

involvement in the process of grouping documents. The 

classification engine is usually trained on selected documents 

only after the training stage ends by automatically identifying 
classes (clusters). 

The task of clustering is to automatically identify groups of 

semantically similar documents. However, unlike the 

classification, the thematic orientation of these groups is not 

known in advance. The goal of all clustering methods for arrays 

of documents is to maximize the similarity of documents that fall 
into the cluster. Therefore, cluster analysis methods are based 

on such definitions of a cluster as sets of documents, the value 

of semantic proximity between any two elements of which is not 

less than a certain threshold, or the value of proximity between 

any document of the set and the center of the cluster is also not 

less than a certain threshold. 

When using numerical methods of cluster analysis for 

determining proximity, the following main metrics are used: 

Euclidean distance: 

 2

1

( , ) ( ) ,
N

i j ik jk

k

D x x x x


                   (2.5.1) 

which is a special case of the Minkowski metric for 2 :p   

1

1

( , ) ( ) .
N p

p

p i j ik jk

k

D x x x x


 
  
 
              (2.5.2) 

To group documents represented as vectors of weight 

values of the terms included in them, a metric based on the 
scalar product of weight vectors is often used: 

1

ˆ ˆ ˆ ˆ( , ) ,
N

i j i j ik jk

k

Sim x x x x x x


               (2.5.3) 
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where ,i jx x – documents 
ikx – is an element of the matrix of 

weight values of terms included in , ( 1, ..., ),ix i N  
'

ix is the 

normalized vector ˆ / | |i i ix x x . 

The initial space of features is usually chosen as the space 

of terms, which is formed as a result of the analysis of a large 

array of documents. To conduct such an analysis, different 

approaches are used – weight, probabilistic, semantic, etc. 

In the field of information retrieval, cluster analysis is most 

often used to solve two problems – grouping documents in 
databases (information arrays) and grouping search results. 

For static documentary arrays, cluster analysis methods 

have now received great development and popularity. At the 

same time, the question of applying these methods to 

dynamically changing information flows, which, in addition to 
dynamics, are also characterized by large volumes, remains 

open. 

Cluster analysis methods are widely used in the 

procedures for ranking the responses of information retrieval 

systems, in the construction of personalized search folders, 

personal search interfaces for users of information retrieval 

systems. 

2.5.1. Method k -means 

An iterative algorithm for k – means (k -means) cluster 
analysis of grouping documents by a fixed number of clusters is 
as follows: k vectors are randomly selected, which are defined as 

centroids (the most typical representatives) of clusters. Then k 

clusters 1 2{ , , ..., }kC C C are filled – for each of the vectors that 

remain, the proximity to the centroid of the corresponding 

cluster is determined in some way. Proximity can be defined in 
many ways, in particular, as a normalized dot product: 

1( , )

N
j

k k
j k

j

x c

Sim x c
x c




, (2.5.4) 
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where x  document, ( 1, ..., )jc j k cluster centroid jC , 

N  dimension of term space. 

After that, the vector is assigned to the cluster to which it 

is closest. Further, the vectors are grouped and renumbered 
according to their belonging to the clusters. Then, for each of the 

new clusters, the centroid 1( , ..., )i i i

Nc c c  vector is re-

determined, which is closest to all vectors from this cluster, the 

coordinates of which are determined, for example, as follows: 

1
.

| |
i

i

k k

x Ci

c x
C 

                                 (2.5.5) 

After that, the cluster filling process is carried out again, 

then the calculation of new centroids, etc., until the cluster 
formation process stabilizes (or if the decrease in the sum of the 

distance from each element to the center of its cluster is less 

than some specified threshold value). 

k – means algorithm maximizes the clustering quality 

function Q : 

1

1

( , ..., ) ( , ).
i

k
j

k

i x C

Q C C Sim x c
 

 (2.5.6) 

Unlike the LSI method, k – means can be used to group 

dynamic information flows due to its computational simplicity – 

( )O kn , where n is the number of grouping objects (documents). 

The disadvantage of the method is that each document can fall 

into only one cluster. 

2.5.2. Hierarchical grouping-union 

Hierarchical grouping-union (Hierarchical Agglomerative 

Clustering, HAC) begins with the fact that each object is 

assigned a separate cluster, and then the clusters that are 

closest to each other are combined, in accordance with the 

selected criterion. The algorithm ends when all objects are 

combined into a single cluster. The history of associations forms 

a binary tree of the hierarchy of clusters. 
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Varieties of the HAC algorithm differ in the choice of 
proximity (similarity) criteria between clusters. For example, the 

proximity between two clusters can be calculated as the 

maximum proximity between objects from these clusters. 

 Hierarchical clustering is very often used in sociological 

analysis, biology, economics, etc. Mainly where the number of 
clusters is not known in advance. 

For hierarchical clustering, it is necessary to somehow 

determine the distance between the nodes of our graph 

(network). Those. we need to obtain a quantitative estimate of 

the proximity of nodes, similar to the distance in the usual 

Euclidean space. Let's look at two of the most commonly used 
definitions. The first is the Euclidean distance (Euclidean 

distance) is defined as follows: 

 
2

,

,

N

i j ik jk

k i j

x A A


  , (2.5.7) 

where N is the number of nodes in the network. The Euclidean 

distance is exactly zero for completely structurally equivalent 
nodes, and increases for nodes that have no common neighbors. 

The second definition is based on the Pearson correlation 

between rows (columns) of the incidence matrix. 

   
1

,

1 N

ik i ik i

k
i j

i j

A A
N

x 

   




  

 
,  (2.5.8) 

Where 

1 N

i ij

j

A
N

  ,  
2

2 1 N

i ij i

j

A
N

    . (2.5.9) 

Here structurally equivalent nodes are those that have a 

large correlation coefficient. 

After we have determined the distance matrix in any way, 

we can proceed directly to hierarchical clustering. Let us dwell in 

more detail on the Anglomerative algorithm. Let us first describe 

the idea of the algorithm. Let's say we have points 1 2, Nx x x and 
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a matrix of relative distances ijx . At the first step, each point is 

considered a separate cluster. Then we unite the nearest (in 

terms of distance) points and consider them as one cluster, and 

so on until all points are involved. At the output, we get a tree 

(dendogram). When calculating distances between clusters, one 

of the following two algorithms is most commonly used. Single – 

link algorithm calculates the minimum of possible distances 

between pairs of nodes in the cluster, Complete – link algorithm 

calculates the maximum of these distances. 

Let's give a step-by-step example for Single – link 

algorithm. Let there be a graph shown in Fig. 2.5.1. 

 

Figure. 2.5.1 – Graph example 

Having written the matrix of Euclidean distances (1), we 

see that the minimum distance equal to zero corresponds to 

nodes 1 and 5. Therefore, at the first step, we combine these 
nodes into one cluster. 

           

 

 

 

 

 

 

1 2 3 4 5 6

1 0 1 1.414 2 0 1.732

2 1 0 1.732 1.732 1 2

3 1.414 1.732 0 1.414 1.414 1

4 2 1.732 1.414 0 2 1

5 0 1 1.414 2 0 1.732

6 1.732 2 1 1 1.732 0

x 
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At the second step, we again write the distance matrix 
using the Single – link algorithm. The next distance after the 

zero distance is equal to one. And at this step, we get two 

clusters, which in total include all network nodes. 

If we cut the dendrogram along the dotted line 1, then we 

will get two clusters containing nodes (1, 5, 2) and (3, 4, 6), 
respectively. Which also corresponds to the intuitive division into 

clusters, see fig. 1. If we cut along the second dotted line, we get 

three clusters (1, 5), (2) and (3, 4, 6). 

       

 

 

 

 

1
2 3 4 6

5

1
0 1 1.414 2 1.732

5

2 1 0 1.732 1.732 2

3 1.414 1.732 0 1.414 1

4 2 1.732 1.414 0 1

6 1.727 2 1 1 0

 
 
 

 
 
 

 
On fig. 2.5.2 shows the final dendrogram of the network. 

 

 

Figure. 2.5.2 – Single – link algorithm used 

1 

2 

1 2 3 4 6 5 
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If we use the Complete – link algorithm for hierarchical 
clustering, we will get a slightly different dendrogram, see Fig. 

2.5.3. 

The difference in the algorithms will appear at the second 

step of construction. When using the Single – link algorithm, 

node 3 is added to one cluster to nodes (4, 6), since it is 
connected to node 6 by a unit distance, the same as the 

intracluster distance. And when using the Complete – link 

algorithm, node 3 is connected in the next step, because here it 

is necessary to look at the maximum distance, i.e. by the 

distance from node 3 to node 4, which is greater than the 

intracluster distance between nodes 4 and 6. 

 

 

Figure. 2.5.3 – Complete algorithm used – link 

2.5.3. Latent semantic analysis 

The method of cluster analysis LSA / LSI (latent semantic 

analysis / indexing) [is based on singular value decomposition of 

matrices (SVD, S ingular V alue D ecomposition). Let an array of 

documents { | 1, ..., }jD d j n  be associated with a matrix A

whose rows correspond to documents and whose columns 

correspond to the weight values of terms (the size of the term 

dictionary is m ). The singular 0.iis  value r decomposition of a 

Amatrix U of 0,ijs  dimension m r rank r n is m n its S 

1 

3 

1 2 3 4 6 5 

2 
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decomposition V of 
TA USV the i j form S  are called the 

singular values of the matrix A . 

Orthogonal matrices U and V have the following property: 

.T TUU V V I                                      (2.5.9) 

It is proved that the above partition of the matrix A has the 

peculiarity that if S only k the largest singular values are left in 

the matrix (we denote such a matrix as 
kS ), and in the matrices 

U andV   only columns corresponding to these values 

(respectively, matrices ,k kU V ), then the matrix 
T

k k k kA U S V  

will be the best Frobenius approximation of the original matrix 

Aby a matrix with a rank not exceeding k . Recall that the 

matrix norm X  dimension M N according to Frobenius is the 

expression: 

2

1 1

.
M N

ijF
i j

X x
 

                                  (2.5.10) 

Thus, for matrices Aand 
kA it is proved that: 

: ( )

argmin .k F
X rank X k

A A X


                          (2.5.11) 

In accordance with the LSA method, not all, but only k the 

largest singular values of the matrix are taken into consideration 

A , and each such value is assigned one cluster. 

kA defines k an -dimensional factor space onto which both 

documents (using the matrix V ) and terms (using the matrix U ) 

are projected. In the resulting factor space, documents and 

terms are grouped into areas that have some common hidden 

meaning. Those. the resulting areas are clusters. 

Choosing the best dimension k for LSA is a matter of 

individual research. Ideally, k it should be large enough to 

display the entire real-life data structure, but at the same time 
small enough not to take into account noise – random 

dependencies. 
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In the practice of information retrieval, special importance 

is given to matrices 
kU and .T

kV Rows of a matrix 
kU are 

considered as images of terms in k  a dimensional real space. 

Similarly, matrix columns 
T

kV are considered as images of 

documents in the same k  dimensional space. In other words, 

these vectors define the desired representation of terms and 

documents in k  the dimensional space of hidden factors. 

There are also methods for incrementally updating all 

values used in an LSA. When replenishing with a new document 

d (for example, a new result of a search for a query) an 

information array for which a singular decomposition has 

already been carried out, it is possible not to calculate the 
decomposition again. It is enough to approximate it by 

calculating the image of a new document based on the 

previously calculated images of terms and weights of factors. Let 

d  the vector of weights of the terms of the new document (a 

new column of the matrix A ), then its image can be calculated 

by the formula:
1' .T

k kd S U d  

If q  the user's request vector of dimension ,m i  th 

element of which is equal to 1, if the term with the number i is 

included in the request, and 0 otherwise, then the image of the 

request q in the space of latent factors will look like:
1' .T

k kq q U S  

In this case, the measure of proximity between the query q

and the document d is estimated by the value of the scalar 

product of the vectors 'q and  T

kV d (here  T

kV d denotes d  the 

th column of the matrix 
T

kV ). 

In information retrieval, as a result of the fact that the least 
significant singular values are discarded, a space of orthogonal 

factors is formed that plays the role of generalized terms. As a 

result, there is a “convergence” of documents from subject areas 

that are close in content, and the problems of synonymy and 

homonymy of terms are partially solved. 

The LSA method is widely used in ranking the output of 
information retrieval systems based on citation. This is the HITS 

(Hyperlink Induced Topic Search) algorithm – one of the two 
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most popular today in the field of information retrieval. If we 

recall the concept of the incidence matrix A (section 2.8), then 

the HITS algorithm ensures the selection of the most 

authoritative documents (authors - pa  or intermediaries – ph ) 

that correspond to the eigenvectors of the matrices
TAA   and 

TA Awith the largest modules of eigenvalues. Let us show that 

the HITS algorithm is equivalent to LSA. Indeed, let, in 

accordance with the singular value decomposition: 

,TA USV S a square diagonal matrix. Then

T T TA A USV VSU   
2 ,T TUSISU US U   Where

2S   diagonal 

matrix with entries 
2.iis Obviously, as in LSA, the eigenvectors 

that correspond to the largest singular values
TAA  and/or 

TA A , 

will correspond to the statistically most important authors 
and/or contributors. 

Along with the fact that the LSA method does not need to 

be pre-tuned to a specific set of documents and qualitatively 

reveals latent factors, its disadvantages include low performance 

(the SVD calculation speed corresponds to the order 
2( ),O N k

where | | | |,N D T   D many documentsT   many terms,

k   dimension of the space of factors) and the fact that it does 

not provide for the possibility of intersection of clusters, which is 

contrary to practice. In addition, due to its computational 

complexity, the LSA method is used only for relatively small 

matrices. 
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Part II. Algorithms, methods, 
phenomena 

3. Some methods and techniques 

The second part of the manual is largely methodological 
notes for the lecturer. The introduction of this material into the 

course of lectures depends both on the preferences of the 

lecturer and on the preparedness of the audience. 

 Part of the material is necessary for a deeper 

understanding of the main part (for example, material related to 
the theory of percolation or the theory of phase transitions of the 

second kind). The other part of the material is what is 

considered to be “every educated person knows”, but as a rule 

(surprisingly) is not read in standard courses. Basically, these 

are the so-called tricks that allow you to get, albeit 

approximately and not always mathematically rigorously, a 
result. "Pure" mathematicians are not interested in such 

methods, and if they are presented, then at such a level of "deep" 

theory that there is no question of a specific application. 

As an example of such techniques, we can name the small 

parameter method (without which not a single application 
worker can do), or, for example, the extremely useful Padé 

approximant method. 

 Even when the problem can be solved exactly, the 

rigorous solution can be so cumbersome that it is more 

convenient to use an approximate solution. Here we give an 

example from Greenberg's book, which clearly shows that the 

solution obtained "on the forehead", by the standard method of 

separation of variables, can give a completely "inedible" solution. 

3.0. A simple boundary value problem 

1. An example of one simple boundary value problem of 

mathematical physics, or about how to and how not to solve 
problems. 

Boundary value problem of the first kind or Dirichlet 

problem (internal) for a rectangle 
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2 2

2 2
0.

x y

   
 

 
 

 
(3.0.1) 

The standard solution method is 

separation of variables: 

 

( , ) ( ) ( )x y X x Y y    (3.0.2) 

the analytical implementation of which 

required five pages of text. 

In classical textbooks (for example, 

Tikhonov and Samarsky), they practically 
never teach techniques, but teach general 

methods. 

G.A. Grinberg, who had to deal with 

the calculation of specific devices, needed to obtain a specific 
solution, and not a "theorem about its existence in a given class 

of functions." G.A. Greenberg developed a method that makes it 

possible to obtain solutions with well-converging series for both 

the solution itself and its derivatives. This method is 

fundamentally different from the method of separation of 

variables – in the mentioned book this method is clearly 
formulated – it is emphasized that the solution obtained in this 

way is not the sum of particular solutions of the proposed 

equation, but gives an expansion of the solution in a series in 

terms of some eigenfunctions of the equations. 

Consider a very simple example given in Greenberg's book, 
which does not even require the application of the above method. 

The standard solution of the Dirichlet problem is based on 

the separation of variables and leads to the expression: 

(1) (2) ,u u    (3.0.2) 

where 
(1) ( , )u x y and 

(2) ( , )u x y are the sums of the products: 

Grinberg G.A. 
Selected questions of 
the mathematical 
theory of electrical 
and magnetic 
phenomena. – M.; L.: 

Academy of Sciences 
of the USSR, 1948. 

Tikhonov A.N., 
Samarsky A.A. 
Equations of 
Mathematical 
Physics (5th ed.). – 
M.: Nauka, 1977. – 
735 p. 
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1 2
0 0(1)

1

( )
( )sin ( )sin

2
sin ,

b b

k

k a x k y k x k y
sh F y dy sh F y dy

k yb b b bu
k ab b

sh
b





    







 
  

1 2
0 0(2)

1

( )
( )sin ( )sin

2
sin ,

a a

k

k b y k x k x k x
sh x dx sh x dx

k xa a a au
k ba a

sh
a





    
  






 
  

(3.0.3) 

where the boundary conditions are presented in general form: 

0 1 2

0 1 2

| ( ), | ( ),

| ( ), | ( ).

x x a

y y b

F y F y

x x

 

 

   

    
 (3.0.4) 

We are now interested in the specific case where 

1 1

2 2

( ) 0, ( ) 0,

( ) , ( ) ,

F y x

F y ay x bx

  

  
 (3.0.5) 

i.e.: 

0

0

| 0, | ,

| 0, | .

x x a

y y b

ay

bx

 

 

   

   
 (3.0.6) 

Then, according to the above, substituting these values 

into the series for 
(1)u and 

(2)u we find: 

  1 1

1 1

2
, ( 1) sin ( 1) sin .k k

k k

k x k y
sh sh

ab k y k xb ax y
k a k bb a

ksh ksh
b a

  

 

  
  

        
 

   

(3.0.7) 

This is a very complex expression, representing two infinite 

sums, from the form of which it is impossible to understand how 

the solution behaves. It is easy to verify directly that the 

equation satisfies the condition: 
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( , )x y x y   , (3.0.8) 

and since the solution is unique, then this is the solution, i.e. 
instead of complex series, only a simple expression can be used. 

So what is the “reception” in the considered case? Its 

essence can be formulated in this way: Before solving the 

equation mat. physics, try to make a substitution to simplify: 

( , )x y < some function > ( , ).u x y  

3.1. Small parameter 

The small parameter method is used 

in many areas of science and technology, 

for example, theoretical physics, the 
theory of deterministic chaos, it is difficult 

to say where it is not used. In the book of 

Blekhman, Myshkis and Panovko, it is 

noted that "the perturbation method is 

one of the most common in applied 

mathematics." 

A large number of monographs are 

devoted to the perturbation method, for 

example, Naife's monograph, which 

contains many examples. Here we 

consider only one simple example – one of 
the most famous and useful problems – 

the anharmonic oscillator problem. The 

zero approximation of this problem is a 

one-dimensional harmonic oscillator (“ball 

on a spring”), described by a linear 

equation 

2

2

d x
m kx

dt
  , (3.1.1) 

where m is the mass, k is the stiffness of the spring, x is the 

deviation from the equilibrium position, F kx  is Hooke's law. 

This equation can be conveniently written as: 

Blekhman I.I., 
Myshkis A.D., 
Panovko Ya.G. 
Mechanics and 
applied mathematics. 
Logic and features of 
applications of 
mathematics. – M.: 
Mir, 1983. 

Naife A. Introduction 
to perturbation 
methods. – M.: Mir, 
1984. 

Myshkis A.D. 
Elements of the 
theory of 

mathematical 
models. – M.: Nauka, 
1994. 
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2
2

2
0

d x
x

dt
  , (3.1.2) 

                 

where /k m  is the cyclic frequency. 

In this form, this equation describes a huge class of phenomena, 

not only a "ball on a spring", but also a pendulum (in this case, 

the x deflection angle), oscillations in LC the -loop ( x  – capacitor 

charge) and much more. 

The solution of equation (2), as it is easy to verify by a 

simple substitution 

   0 0sinx t x t   , (3.1.3) 

where 
0 is the initial phase and 

0x is the amplitude. 

There are situations when a linear approximation is not 

enough and Hooke's law must be replaced by a more complex, 

non-linear one. 

                   2 ...F x kx x    (3.1.4) 

where it is assumed that each next expansion term is much less 

than the previous one, i.e. 

                 
2

0 0x k x  , … (3.1.5) 

Generally speaking, (3.1.4) is a consequence of the Taylor 

series expansion of the potential energy  U x , recall that the 

force F gradU  . An oscillating particle is in a potential well, 

and in the simplest case, when the well is parabolic,   2U x x

Hooke's law holds. 

In a more general case, taking into account only the first 

two terms in the expansion (3.1.4), instead of the harmonic 
oscillator equation (3.1.1), we obtain the nonlinear equation 

               

2
2

2

d x
m kx x

dt
  , (3.1.6) 

The solution of which in an analytical form is not possible. 
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For what follows, it is convenient to write (3.1.6) in the 
dimensionless form 

               

2
2

2

d

d


 


  , (3.1.7) 

where 
0/x x  is a dimensionless coordinate, a  is time, and 

0 /x   is a dimensionless parameter, which, in the accepted 

approximation (
2

0 0x k x  ), is a small parameter of 1 . 

An approximate solution of equation (3.1.7) will be sought 

in the form of an expansion in a small parameter 

         0 1 ...        (3.1.8) 

Substituting (5) into (4) we get 
2 2

2 20 1
0 1 0 0 12 2

...
d d

d d

 
      

 
      (3.1.9) 

In the zeroth approximation in the small parameter, i.e. 

leaving in (3.1.9) only terms c 
0 and discarding all terms c 

1 2,  , etc. we have 

            

2

0
02

0
d

d





  , (3.1.10) 

Linear equation (harmonic oscillator equation), the 

solution of which can be written as 

                     0 sin   . (3.1.11) 

In the first approximation with respect to the small 

parameter  in (3.1.9), the terms with 
2 and above are 

discarded and we obtain 

      

2
21

1 02

d

d


 


  . (3.1.12) 

This equation is linear in 
1 , and the function 

0 was 

found earlier (3.1.11). The solution of equation (3.1.12) (

 2sin 1 cos2 / 2   ) has the form 

       1

1 1
cos2

2 6
    . (3.1.13) 

Restricting ourselves to the first approximation in  for 

(3.1.9), we have: 

     0 1

1 1
sin cos2 .

2 6
            (3.1.14) 
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Or returning from a dimensionless form to the original 
notation 

     
2 2

0 0
0 sin cos 2

2 6

x x
x t x t t

 
 

 
   . (3.1.15) 

Thus, the solution of a nonlinear equation by the small 

parameter method has been reduced to the sequential solution 

of linear equations. 

Even the first approximation with respect to the small 
parameter (3.1.15) allows us to draw two nontrivial conclusions 

about the influence of anharmonicity: 

1. in addition to oscillations with frequency  , which take 

place in the linear case, there are oscillations with a 

doubled frequency 
2. the midpoint of the oscillations, which was chosen to be 

zero in the harmonic oscillator, is now shifted (see the 

second term in (3.14.15)). 

3.2. Asymptotic series and expansions 

One has to be surprised that the 

approximate solution of equations using 

the method of expansion in terms of a 

small parameter is not included in the 
standard courses of mathematical 

analysis. 

A small parameter is usually 

denoted by the letter Up to what values 

( 1) can be considered small is the most 

acute question. 

Example: two rows n e whose 

members are proportional: 1) 
1000

;
!

n

n
2)

!
.

1000n

n

 

Formally, the 1st series converges 

quickly, its millionth term is only 

1/999999; 2nd row diverges. 
Poincaré: “on the contrary (having received an approximate 

solution in the form of such series, with a finite number of 

terms), astronomers will consider the 1st series to be divergent, 

 

Murray Gell-Mann, 
Nobel laureate: "In 
fact, every theorist in 
his own work 
assumes some 
parameters are 
small, and then 
attacks others who 
do the same, 
accusing them of 
unnaturalness." 
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because the first 1000 members of the series increase; and the 
2nd – convergent, since its first 1000 members are decreasing. 

 

In order to find the sum of the series n

n

a , it is necessary 

near 140 the terms, moreover, before na
 

will become small 

enough and stop changing the sum, their values will grow to a 

value 
42~10 (see Fig. 3.2.1). 

Consider now two rows, for 1x  

 1

1

100
,

!

kN
k k

k

k k

S x N a x x
k

    (3.2.1) 

And 

 2

1

!
,

100

N
k k

k k
k k

k
S x N b x x



    (3.2.2) 

The first row  1 ,S x N is the expansion in terms of a small 

parameter 1x , its sum sets the function more accurately, the 

larger N . The series at N  converges. 

The second row N diverges at, and as we are taught in 

standard courses of mathematical analysis, it makes no sense to 

use it. 

 

Figure. 3.2.1 – Behavior na and nb growth n  

In practice, the opposite happens. Despite the convergence 

of the series, it is  1 ,S x N extremely inconvenient to use it, the 

number of terms in the series must be (see Fig. 3.2.2) not less 
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than 20 . As for the second row  2 ,S x N , for 1x already at 

small values, N the sum stops growing. 

Below are examples of asymptotic 

series for two functions. 

The function  f x is given by the 

integral : 

  

 
0

.
xe

f x d
x

 









 (3.2.3) 

You need to get the behavior  f x for 

1x . 

We expand  /x x  in a series in powers  : 

 

 

0

1
.

n n

n
n

x

x x














 (3.2.4) 

 

 

Figure. 3.2.2 – Dependence of the sum of rads  1 ,S x N

and  2 ,S x N on N  

Substituting this expansion into the integral, we find: 

 

Jules Henri Poincare 
(1854 – 1912) 
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 
 

0

1 !
n

n
n

n
f x

x






  (3.2.5) 

This series, of course, diverges, i.e. 

this sum is infinity. However, it can be 

used. To do this, we represent this sum in 

the form of two terms – a truncated series 

and a remainder: 

 
 

 
0

1 !
n

N

Nn
n

n
f x R x

x


   (3.2.6) 

It can be shown that 

 
!

N N

N
R x

x
  (3.2.7) 

those. this replacement  f x by a series 

truncated at N the i-th term gives an 

error not exceeding the first discarded term, namely 1N  the i-

th. Thus, for a fixed N and 1x   x the error is 0NR 

(arbitrarily small) and  f x can be represented as an asymptotic 

series 

 
 

0

1 !
n

N

n
n

n
f x

x


  (3.2.8) 

In the considered example, the small parameter is 1/ x  , 

which gives, for example, 0.1  an error at the tenth step 
4

10 ( 1/ 10) 4 10R x      , which is quite acceptable for many 

approximate calculations. If the small parameter is ten times 

smaller 0.01  , then the error becomes negligible 
14

10 ( 1/ 100) 4 10R x      . Now we can briefly formulate the 

difference between the expansion in a small parameter and the 

asymptotic expansion. In the case of expansion in a small 

parameter, the passage to the limit in the sum from 0n  to N
has the form: 

1 - of course N  , (3.2.9) 

and for the asymptotic series 

Andrianov I. V., 
Barantsev R. G., 
Manevich L. I. 
Asymptotic 
Mathematics and 
Synergetics: A Path 

to Integral Simplicity. 
– M.: Editorial URSS, 
2004. 

Andrianov IV, 
Manevich LI 
Asymptotology: 
ideas, methods, 
results. – M.: Aslan, 
1994. 
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0  , N - of course. (3.2.10) 

Let us give the second example, the expansion of the zero-

order Bessel function  0J x for 1x (small parameter 1/ x  ). 

The asymptotic expansion  0J x has the form 

     0

2
cos sin

4 4
J x u x x v x x

x

    
       

    

 



, 

(3.2.11) 

Where 

 
2 2 2 2 2 2

2 2 2 4 4 4

1 3 1 3 5 7
1 ...

4 2 2! 4 2 4!
u x

x x

   
   

   
 (3.2.12) 

 
2 2 2

3 3 3

1 1 3 5
...

4 2 4 2 3!
v x

x x

 
  

  
 (3.2.13) 

The series  u x and  v x diverge, however, as can be seen 

from Fig. 3.2.3 already the first few members of the series 

perfectly describe  0J x at 1x  , i.e. for a small order parameter 

of unity. 

 

A 

 

 

b 

Figure. 3.2.3. Zero-order Bessel function: a –  0J x on the 

interval  0 5 , 1 – exact value, 2 – asymptotic expansion; b – in 

the interval  1 40 , solid line – the exact value  0J x
 
and 

asymptotic expansion 
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3.3. Padé approximants and expansion in a 
small parameter 

Padé approximation of a function 

( )f x expanded in a power series 

( ) n

nf x = a x , (3.3.1) 

is called a fractional power function 

=0

=0

( ) =

N
n

n

n

M
m

m

m

p x

R x

q x




, (3.3.2) 

such that, when expanded in a power series, it coincides with 

the expansion ( )f x up to coefficients of 
N+Mx . 

Behind this dry definition lies an idea which, while being 

very simple, in a number of cases makes it possible to obtain 
"fantastic results". 

As an example, consider the approximation of a function 

 tg x by a power series – fig. This expansion, of course, does not 

work near 
2

x


 , where  tg x it diverges, since the polynomial 

cannot diverge (take an infinite value) at a finite value of the 

argument. At small values, the x power x expansion  tg x

describes well  tg x , but the closer x to / 2 , the greater the 

discrepancy between the function and the expansion. As can be 

seen from fig. an increase in the number of terms in the 

expansion practically does not improve the situation near 2 . 

So in fig. 3.3.1. bottom line – expansion  tg x up to the 9th degree 

x : 
3

5 7 9

9

2 17 1382
( ) ,

3 15 315 155925

x
f x x x x x      s  (3.3.3) 

second from the bottom up to the 15th power, and finally third 

from the bottom up to the 29th power, so that the last term of 

this expansion is 

G. Stanley "Phase 
transitions and 
critical phenomena" 
M.: Mir, 1973. 

 



 121 
 

29689005380505609448

263505041412702261046875
x  (3.3.4) 

But even such a decomposition (which is unlikely to be 

done by hand) is of little help. 

Let us now see how the Padé approximant method copes 
with this problem. We choose it in the form: 

2 4
( ) ,

1

ax
R x

bx cx


 
 (3.3.5) 

i.e., in the form of a ratio of polynomials not higher than the 
fourth degree. 

power series x expansion in ( )R x has the form: 

 3 2 5( ) ,R x ax abx a c b x     (3.3.6) 

 

Comparing this decomposition with the decomposition  tg x
 

3
52

 ...,
3 15

x
tg x x x     (3.3.7) 

and equating the coefficients at the same powers of the variable, 

we obtain a system of equations for the coefficients a , b and c : 

1a  . 
1

3
ab  .  2 2

15
a c b  . (3.3.8) 

whence 1a  , 1 3b   , 0.022c   , and, consequently, the Padé 

approximant for the function  tg x has the form: 

2 3

( ) ,
1

1 0.022 
3

x
R x

x x



 

 
(3.3.9) 

 

see the third curve from the bottom in fig. 3.3.1, the topmost 

curve is the function  tg x . 
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Figure. 3.3.1. Comparison of the function  tg x , Padé 

approximants and two series expansions 
15( )f x (up to the 15th 

power x ) and 
9 ( )f x (up to the 9th). Function graphs are arranged 

from top to bottom according to the notation on the vertical axis 

A comparison between  tg x , ( )R x , 15 ( )f x and 9 ( )f x shows 

that the Padé approximant of only the fourth degree describes 

the behavior much better  tg x in the entire range from 0 to 
2

 . 

And what is very important describes (albeit not very accurately) 

the divergence near 
2

 . 

The second example is related to a real physical problem – 

determining the viscosity of a suspension, which is a liquid with 

a viscosity 0 in which there are hard particles with a 

concentration of p . 

The greater the concentration of particles, the greater the 

viscosity of the suspension – e . A. Einstein was the first to 

solve such a problem for 1p  in 1905: 

 

0

5
(1 )

2
e p   . 1p  . (3.3.10) 
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obtaining an approximate solution up to the first order of a small 

particle concentration. 

Only 67 years later, in 1972 G. Batchelor and J. Green 

(after very complex calculations) managed to obtain the following 

approximation 

  2

0

5
1 p 5,2 0,3 p

2
e 

 
    

 
. (3.3.11) 

 

Let us now construct the Padé approximant for these two 

approximations. 

1 0 0

1
( ) (1 ),

1
R p ap

ap
  


   (3.3.12) 

whence, according to A. Einstein's approximation 5 / 2a  , and, 

therefore: 

0

1

5
1

2

e

p

 



 (3.3.13) 

from which a fundamentally new fact immediately follows – when 

approaching p a certain value, in this case, to, 2 5cp  the 

effective viscosity c diverges. Such a divergence does indeed 

take place in reality, the experiment shows that at a certain 

concentration of hard particles, the liquid will stop flowing. 
We also note that if we expand the Padé approximant 

(3.3.13) 0

5
/ 1

2
e p 

 
  

 
in a series up to 

2p : 

2

0 0

1 5 25
1 ,

5 2 4
1

2

e p p

p

 
    

 

    
(3.3.14) 

then we get a good second approximation, where about 
2p

stands 25 4 6,25 instead of 5,2 0,3 , obtained by Batchelor 

and Green. 

To clarify cp - the value at which the effective viscosity 

becomes very large, you can construct the Padé approximant 

using the second approximation obtained by Batchelor and 
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Green, assuming that the coefficient at 2p is exactly 5 (Fig. 

3.3.2). 

    

2 0

2

0

1

1

1 ,

Ap
R

Bp

A B p B A B p


 



    





 (3.3.1 5) 

where 

5

2
A B  .   5B A B  . (3.3.1 6) 

and therefore 

0

1 / 2
,

1 2
e

p

p
 





 (3.3.1 7) 

what for cp will give 1 2cp  . 

This value agrees very well with the experimental value. 

 
Figure. 3.2.2 – Effective viscosity. The lower line is the Einstein 

approximation, above it is the expression of Batchelor and 

Green, even higher is the Padé approximant of the Einstein 

approximation, the uppermost line is the Padé approximant of 
the Batchelor-Green approximation 
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3.4. Probability distributions 

The most frequent (as is usually considered) universal 

distribution laws of random variables found in various natural 

science studies are the normal law – the Gaussian distribution 
and the so-called lognormal distribution (Fig. 3.4.1): 

2

22
1

2

x

f x e , (3.4.1) 

2

2

ln

2
1

2

x

f x e
x

, 0x         (3.4.2) 

The frequent occurrence of the normal law is explained by 

the fact that when the distribution of a random variable is 

associated with the sum of independent processes, the 

distribution approaches normal. It is this statement that is the 

content of the central limit theorem of probability theory. Note 

that often in specific studies, the Gaussian distribution of a 

random variable is taken as a matter of habit or convenience. 

 

Figure. 3.4.1 – Graphs of normal and lognormal distribution. 
The mean for the normal distribution is chosen to be zero 

B. Mandelbrot was one of the first who paid close attention 

to the fact that no less universal, often encountered distribution 

law of a random variable is a power (often called hyperbolic) 

distribution with a probability density: 
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,
B

f x
x

 (3.4.3) 

or 

, 0, 1,
A

P X x x
x

 (3.4.4) 

where P X x is the probability that X x , and A and are 

some positive constants, the distribution parameters. 

Respectively, 

,

x

B
P X x dx

x

 .
dP x

f x
dx

 

(3.4.5) 

It should be noted that the above distribution was 

considered by Mandelbrot as a refinement of Zipf's law and is 

often referred to as the Zipf-Mandelbrot distribution. At the same 

time, it turned out that  is a value close to unity, which can 

vary depending on the properties of the text and language. 

In fairness, it should be noted that the power distribution 

functions were considered even by Cauchy. As a clear example of 

the Cauchy distribution, one can give a model of firing from a 

machine gun rotating at a constant angular velocity in a 
horizontal plane (Fig. 3.4.3). 
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Figure 3.4.2. – Cauchy distribution example 

If, when firing single shots, you press the trigger with equal 

probability at any of its positions, then the function of the 

distribution of shots along the angle will be a constant value: 

F const . On the other hand, the probability of hitting an 

infinitely small area dx of an infinite flat target is equal to 

f x dx F d . Whence, taking into account x a tg , 

after elementary transformations we find the Cauchy 

distribution: 

2 2

1
,

a
f x x

a x
. (3.4.6) 

Since for this function the mean x of x (

( )x x f x dx ) is not defined for 1, then neither the 

mathematical expectation (i.e., the mean of x ), nor the variance 

of 
2x , nor the higher-order moments of this distribution are 

defined. In this case, the expected value is said to be undefined 
and the variance is infinite. 

Recall that a special case of a power-law distribution – the 

hyperbolic distribution /A x is named after V. Pareto, and the 

discrete distribution law with a ranged variable was named after 
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J. J. Zipf, who formulated it to describe the frequency of the use 
of words. 

3.5. Scaling. Homogeneous functions 

3.5.1. Homogeneous function of one variable 

A homogeneous function can be defined like this:
 

    ( )f x g f x  .         (3.5.1) 

Example: 

  3f x x .        (3.5.2) 

In this case 

     
3 3 3 3 3 3f x x x x f x          . (3.5.3) 

What is the "benefit" of a homogeneous function? 

Turns out it's huge! 

For example, suppose we know that  f x is a 

homogeneous function. Then if we know its value at one single 

point, then we can find out at any other: 

Let us know in 0x
 
–  0f x , but we want to x . Let's denote 

0x x  . 

       0 0f x f x g f x   ,         (3.5.4) 

where 
0

x
x

 . 

If  f x is continuous and differentiable, then it can be 

shown that the definition     ( )f x g f x  implies   pg  

(up to a factor). 

And thus, a homogeneous continuous and differentiable 

function is a power function. 

Are there other (homogeneous) non-power functions for 

which     ( )f x g f x  ? 
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Yes, they exist, but you have to give up smoothness. 

For example,  the Dirac function: 

   
0,  0

    ;   1.
0,  0

x
x x dx

x
 






 

 
 (3.5.5) 

3.5.2. Homogeneous functions of several variables 

For a homogeneous function of several variables, we have: 

1 2 1 2( ,  ,  ...,  ) ( ) ( ,  ,  ...,  ),n nf x x x g f x x x     (3.5.6) 

in particular, for a function of two variables 

( ,  ) ( ) ( , ),  ( ) .pf x y g f x y g       (3.5.7) 

One can extend the notion of a homogeneous function of 
several variables by introducing a generalized function of several 

variables. For example, for two variables, the generalized 

homogeneous function 

   , , ,a b pf x y f x y  
                         

(3.5.8)
 

which means that each variable has its own scale constant – 
a

for x and
b  For .y  

Again the question arises, what is the “benefit” from the 
fact that the function of, for example, two variables is 

homogeneous? It turns out that generalizing a homogeneous 

function to several variables leads to much more important 

questions than for a function of one variable. 

There is no need to 
explain to programmers 
how important it is if a 

two-dimensional array 
can be replaced with a 

one-dimensional one. 

The function  F z is 

called the scaling (or 
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Indeed, a homogeneous function of two 
variables 

 

can be reduced to a function of one variable. Indeed, let 

   , ,pf x y f x y   , then choose 1
y

 , from where: 

   , , ,1 ;    p x
f x y f x y f

y
  

 
   

 
   

p py  . (3.5.9) 

Hence, 

 , ,1p x
y f x y f

y

  
  

 
. (3.5.10) 

Denote  ,1
x xf F

yy

 
 

 
, then finally: 

   , .p xf x y y F
y

 (3.5.11) 

Thus, a function of two variables  ,f x y is expressed in 

terms of a function of one  xF
y

. 

Let's look at a few examples. 

Planck's formula for thermal radiation: 

 
3

2 3

1
, ,

1KT

u T
c

e










  (3.5.12) 

where is the Planck constant, c is the speed of light, k is the 

Boltzmann constant,  is the cyclic frequency, T is the absolute 

temperature. 

We choose more convenient notation 

self-similar) function. 
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 
3

, ,
1

x
y

x
f x y

e



 (3.5.13) 

where x  , y kT ,    2 2 3, ,f x y c u T  . 

The function  ,f x y is a function of two variables x and y
 

and to set it, you need a two-dimensional array, for example, a 

set of dependencies  ,f x y as a function of x for different values 

y of Fig. 3.5.1. 

 

Figure. 3.5.1. Dependences of the function  ,f x y on x at 

different values y : 5 (solid line), 7 (dashed line), 9 (dotted line) 

On fig. 3.5.2 shows the dependence of the function 

 ,f x y on for different x . y
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Figure. 3.5.2. Dependences of the function  ,f x y on y at 

different values x : 10 (solid line), 20 (dashed line), 30 (dashed 

line) 

A two-dimensional array –  ,f x y can be depicted in the 

same way as a surface – Figure 3.5.3. 

 

Figure. 3.5.3. Surface defined by the function  ,f x y  

If the task was to describe the function  ,f x y

experimentally, then according to Fig. or fig. it would be 
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necessary to measure its value for different x and y , some 

values of which could be difficult to measure (for example, very 

high temperatures). 

Before Planck wrote his formula for thermal radiation, 

Wien's law was known, according to which 

  3,u T F
T


 

 
  

 
, (3.5.14) 

or in our notation 

  3, .
x

f x y x F
y

 
  

 
 (3.5.15) 

Note that this is a typical scaling relation, 

which drastically simplifies the task of experimental 

determination of . Indeed, introducing the 

function 

 (3.5.16) 

 

 

We find that it is a function of 

one variable, and that a one-

dimensional array is sufficient to define 

it (Fig. 3.5.4). 

Another example comes from so-

called economic physics. 

Demand plays an important role 

in the economy. 

demand function for a given 

product (or a group of similar products) 

depends on: 

1) the quantity of goods Q, 
consumed per unit of time; 

2) whether the consumer has 
money U (or income D); 

3) commodity prices – p 

 , ,Q Q U p  

 ,f x y

 
 

3

,
, .

f x y
x y

x
 

Chernavsky D. S., 
Starkov N.I., Malkov 
C.Yu., Kosse Yu.V., 
Shcherbakov A.V. About 
econophysics and her 

place in modern 
theoretical economics, 

UFN, 2011, vol. 181, no. 
7, p. 15 

Barenblatt G.I. 
Similarity, self-
similarity, intermediate 
asymptotics / 2nd ed., 
revised. and additional – 
Leningrad: 
Gidrometeoizdat, 1982. 
– 256 p. 
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g de U and p are conditional and are measured in different units 

($, €, ¥, …), so it seems plausible that is  ,Q U p a homogeneous 

function of these variables. 

Indeed, if we write , then as it turns out, 

the empirical data fit well on one curve. 

This approach allows us to formulate a problem and obtain 

an analytical representation of the demand function and identify 

a very important parameter . 

Closely related to the concept of scaling are the concepts 

of self-similarity (scaling), similarity, and intermediate 

asymptotics. 

 

 

Figure 3.5.4 –  ,x y as a function of one variable /z x y  
When processing experimental data, self-similarity led to 

the fact that a seemingly disordered cloud of experimental points 

in ordinary coordinates fell on a single curve or surface. 

   , UQ U p F
p



minr
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Figure. 3.5.5 -
U

r
p

  – purchasing power 

 

Figure. 6. 
minr r - the consumer does not buy durable goods 

(cars, TVs, cottages, elite goods), everything goes to food, 

clothing, housing and communal services 
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3. 6. Generating functions 

The generating function ( )f x of 

an arbitrary infinite sequence 

0 1 2,  ,  ,  ...,  ,  ...
k

a a a a is the expression 

 
0

,k

k

k

f x a x




  (3.6.1) 

in this case, the variable x is formal and the sum of the series 

itself has no meaning. 

Such a statement is quite unexpected (it can be confusing 

– what kind of function is this, a variable that does not make 
sense). The series can diverge and the only thing that is defined 

is the value at the point 0x  , i.e. 0(0)f a . 

Despite such surprising statements, the generating 
function is a powerful tool (method) that allows you to solve very 

complex problems in a simple elegant way. Here we will consider 

the method of generating functions for solving recurrence 

relations, which allows us to obtain many important results in 

the theory of complex networks. 

The generating function turns a discrete set – a sequence 

 (k 0,  1,  ...)ka  into a continuous function, which allows you to 

"turn on" the mathematical apparatus that works with 

continuous objects – the analysis of continuous functions 

(solution of equations, differentiation, integration, etc.), after 
which you can again return to the "discrete" world. 

The statement of the problem of recurrent relations looks 

like this: let there be a relation 

1 ( ).k kx f x   (3.6.2) 

it is necessary to find an explicit dependence 

( ).kx F k  (3.6.3) 

More general settings are also possible, for example, when 

the recurrence relation is given 

Landau S.K. Lectures on 
generating functions. – M.: 
MTsNMO, 2007. 

Wilf H.S. 
Generatingfunctionology. 

– Academic Press, 1994. 
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 2 1,k k kx f x x   (3.6.4) 

Let's look at a few examples. 

The first example, trivial, is for a simple demonstration of 

the method. Let there be an iterative relation

1 11,  1,  2,  ...,  1k ka a k a    
 

and it is necessary to find the 

dependence ka on k . We introduce a generating function: 

 
1

,k

k

k

G x a x




  (3.6.4) 

multiply it by x and carry out a number of elementary 

transformations: 

   1

1

1 1

1 1

1

1 1 2 2

1 1

2 2

1

1 1 .

k k

k k k k

k k

k k n n

k n

k k n n

n n

n

n n

xG x x a x a x a a

a x x a x x

a x a x a x x x x

 




 

   
 



   

 

 

     

    

   
           

   

 

   

 

 
(3.6.5) 

 

The first term in brackets is (x)G , the second 

 
0

1/ 1n

n

x x




  is, and, given that 1 1a  , we find: 

1
( ) ( ) 1 ,

1
xG x x G x x

x
     


 (3.6.6) 

whence follows the expression for the generating function: 

2
( ) .

(1 )

x
G x

x



 (3.6.7) 

Expanding the resulting expression ( )G x into a Taylor 

series, we find: 

 
 

 2

2
1

1 2 3 ... .
1

k

k

x
G x x x x k x

x





      




  

(3.6.8) 
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Since  
1

k

k

k

G x a x




 , for ka we get : 

,ka k  (3.6.9) 

and, thus, the desired dependence is found. 

Of course, in the considered simple example, from the 

recurrence relation, 1 1k ka a   one can immediately guess that 

1 1a  we are talking about a sequence 1,  2,  3,  ..., , i.e., that ka k

. 

However, the second and third examples demonstrate 

cases where the guess is unlikely, and then the generating 

function method turns out to be practically the only way out. 

The second example, a standard example of a 

demonstration of the generating function method is the 

Fibonacci numbers. Fibonacci considered an idealized 

population of rabbits, when initially there is a newborn pair, 

which, from the second month after its birth, begins to mate and 

every month produce a new pair that behaves in exactly the 
same way. Question: if the rabbits do not die, then how many 

will there be in n months. 

The process is described by the iterative relation 

1 1 0 1, 1 ,   0, 1,n n nF F F n F F       (3.6.10) 

where nF is the number of newborn couples in n the th month. 

We introduce a generating function: 

 
0

n

n

n

G x F x




 . (3.6.11) 

Multiply the iterative relation by 
nx and sum: 

1 1

1 1 1

,n n n

n n n

n n n

F x F x F x
  

 

  

     (3.6.12) 
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note that the summation can only be started from 1n  , since 

for 0n  each sum, an indefinite term appears on the right 1F . 

For the left side of expression (3.6.12) we have: 

 

 

    

1

1 1

1 1

2

1 2 1

1

0

1

1
1 ... 1

1
1

1
1 ,

n n

n n

n n

n

n

F x x F
x

xF x F F x
x

F x x
x

G x x
x

 


 

 





 

      

 
    

 

  

 


  (3.6.13) 

where it was taken into account that 1 1F  . 

For the sum 
1

n

n

n

F x




 it is easy to get: 

1 0

1 ( ) 1.n n

n n

n n

F x F x G x
 

 

      (3.6.14) 

And finally, for the last sum we have: 

 

1

1 1

1 1

0

.

n n

n n

n n

n

n

n

F x x F x

x F x xG x

 


 

 





 

 

 



 (3.6.15) 

Thus, the iteration relation can be written as: 

( ) 1
( )(1 ) 1

G x x
G x x

x x


    , (3.6.16) 

which gives the following expression for the generating function: 

2
(x)

1

x
G

x x


 
. (3.6.17) 

Expanding  G x into simple fractions, we find: 
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2

0 0

1 1 1

1 1 1

1
,k k k k

k k

x

x x a b ax bx

a x b x
a b

 

 

 
   

     

 
  

  
 

 (3.6.18) 

where 
1 5

2
b


 , a 

1 5

2
a


 is the golden ratio. 

Thus, for ( )G x we find: 

0

0

( )
5

1 1 5 1 5
,

2 25

n n
n

k

n n

n

k

a b
G x x

x










 

     
     
     





 (3.6.19) 

which for the desired nF gives: 

1 1 5 1 5
.

2 25

n n

nF
     
     
     

 (3.6.20) 

The last example concerns the study of deterministic SF -

networks, namely,  ,u v colors. Earlier it was stated without 

derivation that from the iterative relation 

1 1,  1,  2,  ... ,  ,n nN wN w n N w     (3.6.20) 

with follow : 

2
.

1 1

n

n

w w
N w

w w


  

 
 (3.6.21) 

Let us show how we can obtain ( )nN f n by the 

generating function method 

2

( ) n

n

n

G x N w




 . (3.6.22) 

Making obvious transformations 
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 

   

 

1

1 1

2 2

1 0

( )

1

1
( ) 1 ,

1

n n

n n

n n

n n

n

n n

G x N w N x wx wN w x

wx wx wN w x w x x

wx wxG x w x
x

 



 

 

 

     

 
       

 

 
     

 

 

   (3.6.23) 

for ( )G x we get the following expression : 

22
( )

(1 )(1 )

x x
G x w

wx x


 

 
, (3.6.24) 

Because the 

1 1 1
,

(1 )(1 ) 1 1 1

w

wx x w x wx

 
  

     
 (3.6.25) 

The generating function can be written as a sum of 

fractions: 

2 22 2
(x) ,

1 1 1 1 1

w x x wx x
G

w x x wx wx

 
    

     
 (3.6.26) 

each of which, in turn, can be written as a sum: 

1

0 0 1

,
1

n n n

n n n

x
x x x x

x

  


  

  


    (3.6.27) 

 

1

,
1

n n

n

x
w x

wx

 






  (3.6.28) 

 

 
2

2 2 2

0

2 3

1

1 ...
1

... ,

n

n

n

n

x
x x x x x

x

x x x x x x









     


      




 (3.6.29) 

 



 142 
 

2

1

1
,

1

n n

n

wx
w x x

wx w





 


  (3.6.30) 

substituting which into the expression for ( )G x (free " x " 

appearing in place of the second and fourth terms are reduced) 

we find: 

1

2
( ) 1 ,

1

k n

n

w w
G x w x

w w





 
  

  
  (3.6.31) 

whence follows the expression for nN . 

The given examples show that the task of obtaining an 

explicit dependence on the step number from the iterative 

relation is somewhat similar to encryption-decryption – it is 

difficult to solve, but easy to encrypt. Indeed, having an explicit 

expression, for example, 
2

1 1

n

n

w w
N w

w w

 
  

  
it is very easy to 

make sure that it satisfies the iterative relation 1n nN wN w  . 

The inverse problem is much more complicated, and here the 

method of generating functions is of great benefit. However, 

when using this method, there is no clear algorithm. What needs 

to be done – multiply by 
2,  ,  ...x x , divide, split the series into 

parts, etc. Each specific task has its own action. However, in the 

general (not completely specific) description of actions, there are 
several clear, sequential steps, the first is to rewrite (transform) 

the generating function, taking into account the given iteration 

relation, so as to obtain an equation for the generating function 

with respect to the introduced formal variable. After solving this 

equation, the resulting function of x must be expanded into a 

series, writing out in an explicit mathematical form the 

expansion coefficients at the powers of the formal variable, 

which gives the solution. 

In some cases, this path is quite cumbersome. This is 
where other types of generating functions can come in handy. 

Until now, the generating function has been understood as a 

power series 

( ) ,n

nG x a x  (3.6.32) 
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it turns out that sometimes it is more convenient to use the 
Dirichlet generating function based on the Riemann zeta 

function
1 1

( ) 1 ...
2 3x x

x       

1

1

( ) ... ,
1 2

n

x x x
n

aa a
G x

n





     (3.6.33) 

or on the exponential generating function 

( ) .
!

n

n

n

x
G x a

n
  (3.6.34) 

In conclusion, we note that there are also generating 

functions of several variables. 

3.7. Dirac delta function 

The delta function ( -function) was introduced by the 
English physicist P. A. M. Dirac “out of necessity” when he 

created the mathematical apparatus of quantum mechanics. 

Mathematicians “did not recognize” it for some time, after which 

they created the theory of generalized functions, of which the -

function is a special case. 

According to the (naive) definition, the -function is equal 

to zero everywhere except at one point, but the area covered by 

this function is equal to one: 

0,  0
( ) ,  ( ) 1.

,  0

x
x x dx

x
 






 

 
  (3.7.1) 

These conflicting requirements 

cannot be met by a "regular" type 

function. 

In fact, just as the differential 

dx is not a number (equal to zero), 

but the phrase “an infinitesimal value” is difficult to understand 

qualitatively, it is correct to understand dx not as a number, but 

as a limit (process), so the -function is correctly understood as 
a limit (process). On fig. 3.7.1 and 3.7.2 show several functions 

(depending on the parameter), the limit of which is the -

Zeldovich Ya.B. Higher 
mathematics for beginner 
physicists and 
technicians. –M.: Nauka, 
1982. 
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function. There are infinitely many such functions – everyone 
can choose their own. 

The -function has many useful properties, being, in 

particular, the continual analogue of the Kronecker symbol ik  

0 0( ) ( ) ( ).f x x x dx f x





    (3.7.2) 

compare with 

i ik k

i

f f  . (3.7.3) 

Another surprising relation indicates how you can 
differentiate by integrating: 

' '

0 0( ) ( ) ( ),f x x x dx f x




   (3.7.4) 

Where
'  is the derivative of - the function. 

 

 
A) 

 
b) 

Figure. 3.7.1 – Two successive approximations to the Dirac -

function. The function is shown
1 sin( )

( , )
x

R x
x





  

a) 10  , b) 20   
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A) 

 
b) 

Figure. 3.7.2 – Two functions that a give -functions 

in the limit: 

a) 
2 2 3 2

( , )
2(1 )

a
R x a

a x



, b) 

2 2
( , )

(1 )

a
R x a

a x



. 

Finally, note that the interval from the -

function: 

( ) ( ),

x

x dx x 


  (3.7.5) 

where ( )x is the Heaviside function, 

0,  0
( ) ,

1,  0

x
x

x



 


 (3.7.6) 

step, with a break at the point 0x  . 

 

3. 8. Phase transitions  
 

 

Lev Davidovich 
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In order to talk about phase transitions, it is 
necessary to define what phases are. The concept 

of phases occurs in many phenomena, therefore, instead of 

giving a general definition (the more general it is, the more 

abstract and non-visible, as it should be), we will give a few 

examples. 

First, an example of their physics. For the usual, most 

common liquid in our life – water, three phases are known: 

liquid, solid (ice) and gaseous (steam). Each of them is 

characterized by its own parameter values. It is essential that 

when external conditions change, one phase (ice) passes into 

another (liquid). Another favorite object of theorists is a 
ferromagnet (iron, nickel and many other pure metals and 

alloys). At low temperatures (below for nickel ), a 

nickel sample is a ferromagnet; when the external magnetic field 

is removed, it remains magnetized, i.e. can be used as a 

permanent magnet. At temperatures above this property is 

lost, when the external magnetic field is turned off, it goes into a 

paramagnetic state and is not a permanent magnet. When the 
temperature changes, a transition occurs – a phase transition – 

from one phase to another. 

Let us give one more geometric example from the theory of 

percolation. Randomly cutting out connections from the grid, in 

the end, when the concentration of the remaining connections 

p becomes less than a certain value cp , it will no longer be 

possible to pass through the lattice “from one end to the other”. 
Thus, the grid from the state of percolation – the phase of 

"percolation", will pass into the state of the phase of "non-

percolation". 

From these examples, it is clear that for each of the 

considered systems there is a so-called order parameter that 

determines which of the phases the system is in. In 
ferromagnetism, the order parameter is the magnetization in a 

zero external field; in the theory of percolation, it is the network 

connectivity, or, for example, its conductivity or the density of an 

infinite cluster. 

Phase transitions are of various kinds. Phase transitions of 

the first kind are such a transition when several phases can 
simultaneously exist in the system. For example, at a 

0360
c

T C

c
T

Landau (1908-1968) 
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temperature 0 C  ice floats in water. If the system is in 

thermodynamic equilibrium (no heat supply and removal), then 

the ice does not melt and does not grow. For phase transitions of 
the second kind, the existence of several phases simultaneously 

is impossible. A piece of nickel is either in a paramagnetic state 

or in a ferromagnetic state. A mesh with randomly cut 

connections is either connected or not. 

Decisive in the creation of the theory of phase transitions 

of the second kind, the beginning of which was laid by 
L.D. Landau, was the introduction of the order parameter (we 

will denote it ) as a distinctive feature of the phase of the 

system. In one of the phases, for example, paramagnetic, 0 , 

and in the other, ferromagnetic, 0 . For magnetic 

phenomena, the order parameter is the magnetization of the 

system. 

To describe phase transitions, a certain function of the 
parameters that determine the state of the system is introduced 

– ( , ,...)G T . In physical systems, this is the Gibbs energy. In 

each phenomenon (percolation, a network of "small worlds", 

etc.), this function will be determined "independently". The main 

property of this function, the first assumption of L.D. Landau – 

in the state of equilibrium, this function takes the minimum 
value:

 
2

2
0, 0.

G G

 

(3.8.1) 

In physical systems one speaks of thermodynamic 

equilibrium, in the theory of complex chains one can speak of 
stability. Note that the minimality condition is determined by 

varying the order parameter. 

The second assumption of L.D. Landau – during a phase 

transformation 0 . According to this assumption, the 

function ( , ,...)G T near the phase transition point can be 

expanded in a series in powers of the order parameter : 

, (3.8.2) 2 4

0
, ...G T G T A T B
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where 0 in one phase (paramagnetic, if we are talking about 

magnetism and incoherent, if we are talking about a grid) and 

0 in the other (ferromagnetic or connected). 

From the condition we find: 

,                  (3.8.3) 

which gives us two solutions 0and
2 / 2 0.A B  

For cT T there must be a solution 0 , and for cT T a 

solution 0 . This can be satisfied if for the case cT T and 

0choose 0A  . In this case, there is no second root. And for 

the case, cT T the second solution must take place, i.e. must be 

performed 0A . Thus: 

0A  at cT T , 0A at cT T , 

Landau's second assumption needs to be fulfilled ( ) 0cA T 

. The simplest form of the function ( )A T that satisfies these 

requirements is 

.  (3.8.4) 

Then 

,  (3.8.5) 

where 

, or ~ ( )cT T , cT T , where is 1/ 2 the 

so-called critical index, and the function ( , )G T takes the form: 

(3.8.6) 

On fig. 3.8.1 shows the dependence ( , )G T for cT T and 

cT T . 

/ 0G

32 0A B

c
A T T

2 / 2
c

A B T T

c
T T

2 4

0
, ...

c
G T G T T T B
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Figure. 3.8.1 – Graphs of the function of parameters ( , )G T  

for cT T and cT T  

Qualitative dependence of 

parameters on ( , )G T the order 

parameter shown in fig. 3.8.1  0 0G  . 

The dependence of the order parameter 

on temperature is shown in Fig. 3.8.2. 

A more advanced theory takes into 

account that when cT T  the order 

parameter , although very small, is not exactly zero. 

The transition of the system from a state with 0  at 

cT T to a state with 0  when decreasing T and reaching 

values cT T can be understood as a loss of position stability 

0  at cT T . Recently, a mathematical theory has appeared 

with the sonorous name "The Catastrophe Theory", which 
describes many different phenomena from a single point of view. 

From the point of view of the theory of catastrophes, the phase 

transition of the second kind is the “assembly catastrophe”. 

Poston T, Stewart I. 
Catastrophe theory 
and its applications. – 
M.: Mir, 1980. 

 
Gilmore R. Applied 
Catastrophe Theory. – 

M.: Mir, 1984. 



 150 
 

 

Figure. 3.8.2 – Dependence of the order parameter on 

temperature: at cT T  and near  cT  the order parameter 

behaves like a power function, and when cT T   0  

3.9. Cellular automata 
of cellular automata was first 

proposed more than half a century ago by 

J. Von Neumann and developed by 

S. Wolfram (S. Wolfram) in the 

fundamental monograph “A New Kind of 

Science”. 

Cellular automata are useful 
discrete models for the study of 

dynamical systems. The discreteness of 

the model, or rather, the ability to 

represent the model in a discrete form, 

can be considered an important 
advantage, since it opens up wide possibilities for using 

computer technologies. 

For a long time, cellular 

automata were perceived as a fun 

game that has no practical value. But 

in recent years, in connection with the 
development of computer technology, they are beginning to 

quickly enter the arsenal of tools that are used in practice in 

various fields of science and technology. 

 

J. Fon. Neumann 
(1903-1957) 

Neumann J. Theory of self-
reproducing automata. – 
M.: Mir, 1971. – 382 p. 
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A cellular automaton is a discrete 
dynamic system, a collection of identical 

cells connected in the same way to each 

other. All cells form a network (lattice) of 

cellular automata. The state of each cell 

is determined by the state of the cells 
included in its local neighborhood and 

are called nearest neighbors. The 

neighborhood of the cell with the number 

j - ( )O j
 
is the set of its nearest neighbors. 

The state j of the -th cell at the moment 

of time 1t 
 
is defined by some rule F that 

can be expressed, for example, in the 

language of Boolean algebra: 

 ( 1) , ( ),j jy t F y O j t  . (3.9.1) 

 

In many problems, it is considered 
that the cell itself belongs to its nearest 

neighbors, i.e. ( )jy O j , in this case the 

formula is simplified:  ( 1) ( ),jy t F O j t  . 

Cellular automata satisfy the following 

rules: 

- the change in the values of all cells 

occurs simultaneously (the unit of 

measurement is a cycle); 
- the network of cellular automata is homogeneous, i.e. the 

rules for changing states are the same for all cells; 

- a cell can be affected only by cells from its local 

neighborhood; 

- the set of cell states is finite. 
Cellular automata can have any dimension, but one-

dimensional and two-dimensional systems of cellular automata 

are most often considered. 

In the case of a two-dimensional lattice, the elements of 

which are squares, it is convenient to specify each cell with two 

indices – ,i jy . The nearest neighbors included in the 

neighborhood of the element ,i jy are cells located up and down 

and to the left and right of it (the so-called von Neumann 

 
 

S.  Wolfram 
 

Wolfram S. A New 
Kind of Science. –
Champaign, IL: 
Wolfram Media Inc., 
2002. 
 
Wolfram S. ed. Theory 
and Applications of 
Cellular Automats. – 
Singapore: World 
Scientific. 1986. 

 
Toffoli T., Margolus N. 
Machines of cellular 
automata. – M.: Mir, 
1991. 
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neighborhood:  , 1, , 1 , , 1 1,( ) , , , ,N

i j i j i j i j i j i jO y y y y y y    , you can add 

diagonal elements – the neighborhood mura (G. _ Moore):

,( )M

i jO y 
 

 1, 1 1, 1, 1 , 1 , , 1 1, 1 1, 1, 1, , , , , , , ,i j i j i j i j i j i j i j i j i jy y y y y y y y y            .
 

 

In the Moore model, each cell has 

eight neighbors. To eliminate edge effects, 
the lattice is topologically “folded into a 

torus”, i.e. the first line is considered a 

continuation of the last one, and the last 

line is considered to be the previous one – 

the so-called boundary conditions. 
This allows you to determine the 

overall ratio of the value of the cell at the 

step  compared to step : 

, 1, 1 1, 1, 1 , 1

, , 1 1, 1 1, 1, 1

( 1) ( ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( )).

i j i j i j i j i j

i j i j i j i j i j

y t y t y t y t y t

y t y t y t y t y t

     

     

 
 

(3.9.

2)
 

Let's consider one of the examples 

of using cellular automata – the 

innovation distribution model and its 
generalization – the news distribution 

model. The model of diffusion (distribution) 

of innovations functions according to the following rules: each 

individual who is able to accept an innovation corresponds to one 

square cell on a two-dimensional plane. 

 
 

 

 

In this case: 1) each cell can be in two 

states : 1 – the novelty is accepted; 0 – 

novelty not accepted. 2) the machine, 
having perceived the innovation once, 

remembers it forever (state 1, which 

cannot be changed). 3) the automaton 

approves the decision regarding the 

adoption of the novelty, focusing on the 
opinion of the eight nearest neighbors, i.e. 

if there are m adherents of the novelty in 

1t  t

Neighborhood of 
Neumann: 

 
Mur area: 

 

Bhargava S.C., Kumar 
A., Mukherjee A. A 
stochastic cellular 
automata model of 
innovation diffusion. 

Technological 
forecasting and social 
change, 1993. – Vol. 
44. – No. 1. – pp. 87-
97. 
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the neighborhood of a given cell p (the Moore neighborhood is 

used), is the probability of its acceptance, (if pm R ( R is a fixed 

value is the threshold), then the cell accepts the innovation (value 

1). Cellular modeling allows you to build much more realistic 
models of the innovation market than traditional approaches. 

In the model of information diffusion, it was assumed that a 

cell can be in one of three states: 1 – "breaking news" (the cell is 

painted black); 2 – news that is outdated, but saved as information 

(gray cell); 3 – the cell does not have information transmitted by the 

news message (the cell is white, the information has not reached or 
has already been forgotten). The following message propagation rules 

are adopted in the model: 

– first, the entire field consists of white cells, with the 
exception of one, black, which was the first to “accept” 

the news (Fig. 3.9.1 a); 

– a white cell can only be repainted black or remain white 
(it can receive news or remain "in the dark"); 

– the white cell is repainted if a condition similar to the 

innovation diffusion model is met: 1pm  (this condition is 

modified for ) ; 

– if the cell is black, and around it are exclusively black 

and gray, then it is repainted in gray colors (the news 
becomes outdated, but is saved as information); 

– if the cell is gray, and around it are exclusively gray and 
black, then it is repainted in white (the aging of the news 

occurs when it is well known). 

The described system of cellular automata qualitatively 

reflects the process of message propagation among individual 

information sources. It turned out that the state of the system of 

cellular automata is completely stabilized in a limited number of 
moves, i.e. the process of evolution turned out to be convergent. 

An example of the model operation is shown in fig. 3.9.1. 

2: 1.5 1m pm  
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Figure 3.9.1 – The process of evolution of the system of cellular 

automata "diffusion of news": a – initial state; b-e – intermediate 
states; e – final state 

Typical dependences of the number of cells that are in 

different states depending on the iteration step are shown in 

Fig. 3.9.2. In this case, obviously, the total number of cells that 

are in all three states at each iteration step is constant and 

equal to the number of cells, and when the system of cellular 

automata stabilizes, the ratio of gray, white and black cells is 

approximately: 3:1:0. 
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Figure 3.9.2 – The number of cells of each color depending on the 

step of evolution: white cells – (); gray cells – (); black cells –  

() 

A detailed analysis of the dependencies obtained made it 

possible to draw analogies of this model of "information 

diffusion" with some analytical considerations. The simulation 

results suggest that the evolution of gray cells is described by 

some continuous function: 

 (3.9.3) 

where t is the time (evolution step), g is the time shift providing 

the required fragment of the analytical function, g and is the 

steepness parameter of this function. 

Accordingly, the dynamics of white cells 
wx (the number of 

cells at the time t ) can be modeled by an "inverted" function gx

with similar parameters: 

(3.9.4) 

Since, as mentioned above, the balance condition is always 

satisfied, i.e. the total number of cells at any time is always 

constant, then the normalization condition can be written as 

follows: 

1,g w bx x x   (3.9.5) 

 , , ,g g gx f t  

 1 , , .w w wx f t   
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where 
bx is the number of black cells at time t . 

Thus, we get: 

(3.9.6)
 

The view shown in fig. 5 5 dependencies suggests that as a 

function
 
the following expression (logistic function) can 

be chosen: 

  (3.9.7) 

where C is some normalizing constant. 

On fig. 3.9.3 shows graphs of dependence , ,g w bx x x on 

the step of evolution of a system of cellular automata, obtained 

as a result of analytical modeling. 

It should be noted that the dependence of news diffusion 

obtained as a result of modeling is in good agreement with the 

"life-like" behavior of thematic information flows on Internet 
sources (websites), and on local time intervals – with traditional 

models. 

  
Figure 3.9.3 – Continuous dependencies obtained as a result of 

analytical modeling, depending on the step of evolution: solid 

line – gray ( gx ); dotted line – white ( wx ); solid thick line – black (

bx ) 

   1 , , , , .b g w w w g gx x x f t f t       

 , ,f t  

 
( )

, , ,
1 t

C
f t

e 
 





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3.10. Self-organized criticality 

Under the system that generates 

information, most often they mean a real 
social or economic system, from which 

one cannot expect simple predictable 

information or uniform behavior. In a real 

system, an information event can be 

considered in some sense as a 

catastrophe, since it is unexpected. If in 
most cases the prediction of an individual 

event seems impossible, then the 

behavior of the system as a whole, its 

response to an impact or disturbance is 

partially predictable and is the object of 
scientific research. 

 

 

The term "self-organization" (self – 

organizing), associated With general 

theory systems, was introduced V. Ashby 
in 1947  And perceived by the then new 

cybernetics, its creators N. Winner, G. 

Forster, etc. Currently, this concept is 

most often associated with the name of 

P. Bak. In 1987-1988 P. Buck, C. Tang  
and K. Wiesenfeld in his works [70, 71] 

for the first time described in detail a 

cellular automaton that brought the 

system to a statistically the same 

“critical” state, which they called the state 

of self-organized criticality. A typical strategy in physics is to 
reduce the number of degrees of freedom in the problem under 

study, for example, in mean field theory, where the environment 

acts on the remaining degree of freedom of the system as some 

mean field, leaving only one variable to study. 

The most obvious model demonstrating self-organized 
criticality is a pile of sand, familiar to everyone since childhood. 

If the sand is dry, then no Easter cake can be built from it, 

everything crumbles right there. In childhood, few people 

thought about how this happens. No matter how high the pile 

 

Per Tank  

(1948 – 2002) 

Bak P., Tang C., 
Wiesenfeld K. Self-

organized criticality: 
An explanation of 1/f-
noise. Phys. Rev. Lett. 
1987. Vol. 59.-pp. 
381-384. 

Bak P., Tang C., 
Wiesenfeld K. Self-
organized criticality. 

Phys. Rev. A., 1988. – 
Vol. 38. – No. 1. – pp. 
364-374. 
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was, the angle of inclination of the shedding cone remained 
unchanged. This was once again proved in the experiment in the 

experiment by grown children, at the University of Chicago, 

under the guidance of H. Yager, they experimented with a real 

pile of sand. 

The state of this heap can be called critical, since by applying a 

minimum perturbation, throwing one grain of sand from above, 

the surface of the heap will be out of balance, and an avalanche 

will come down. And after its descent, there will again be a 

smaller pile of sand, new falling grains of sand will complete the 

pile to the same critical slope, and a new thrown grain of sand 

will again cause an avalanche. The heap is always in a critical 

state – small perturbations cause a reaction that is 

unpredictable in size, and always self-organizes – maintains the 

angle of inclination of the surface (Fig. 3.10.1). 

 

Figure. 3.10.1 – Box and rotating drum with sand with the same 
angle of inclination of the side plane 

When modeling self-organized criticality, we study the 

statistics of avalanches, when one thrown grain of sand causes 

an avalanche from others lying on the surface. 

Consider a discrete system analogous to a heap of sand in 

the one-dimensional case. Let be the height of the heap at 

the point ( 1, 2, ..., )x x N . It is convenient to depict a heap 

in two forms – the original one (Fig. 58 a) as a function of height 

from coordinates h h x and in the form of increments 

1z x h x h x , which show the difference in heights at 

neighboring points – fig. 58 b. The left parts of Fig. 5 7 show the 

initial state of the heap. 

( )h x
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 Let's introduce rule 1: if the height difference at a point 

x is greater than a certain critical value ch x h , then extra 

grains of sand roll down to neighboring points. Choosing the 

critical value 3ch rule 1 can be written as follows: 

( ) 2

( ) ( ) 2,

( 1) ( 1) 1 z x

z x z x

z x z x 

 

   

 
(3.10.1) 

The first relation means that the height of the heap at the 

point x decreases by two grains of sand, the second that at 

neighboring points (left and right) the height will increase by one 

grain of sand. 

On heap boundaries, boundary conditions 1 will be met: 

 
(3.10.2) 

The first of conditions 1 can be called “closed”, since the 
particle will never go outside the system, in contrast to the 

“open” conditions on the other side, when the particle rolls out 

and falls. 

On fig. 3.10.2 on the left is the initial state of the heap – 

height h x and increment z x , on the right – after shedding. 

So, for example, when 6x the increment before shedding was 

equal to 6 3 2z . After shedding, two grains of sand from the 

position 6x move one at a time to the left 5x and to the right 

7x - fig. 3.10.2 on the left. 

On the one hand, rule 1 is a discrete non-linear diffusion 

equation and, on the other hand, it is a cellular automaton in 

which the state of cell x at time 1t is determined by the state / 

of neighboring cells at the previous time t . Graphically, the 

action of rule 1 can be represented as it is done in Fig. 58. 

It is obvious that a one-dimensional heap, when it 

collapses according to rule 1 and conditions 1 from a non-

equilibrium state c 2z x , has one critical state 2z x for 

any x. In the one-dimensional case, any stable state is, in a 

certain sense, critical, since any small perturbation will cause it 

to pass through the entire system, and any decrease in the slope 

to 2z x at any point will stop it. This is very similar to other 

one-dimensional critical phenomena such as percolation. It 

( ) 2

(1) 0,

( ) ( ) 1,

( 1) ( 1) 1 



 

    z N

z

z N z N

z N z N
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should also be noted that such a state in the one-dimensional 
model has no spatial structure. 

Similarly to the one-dimensional P. Buck proposed a rule 

for a two-dimensional heap (rule 2 and conditions 2). In such a 

system, the action of rules 1 for each of the directions x and y , 

the critical value is traditionally chosen to be 3: 

 (3.10.3) 

(Rule 2) 

 
 

(3.10.4) 
(Conditions 

2) 

 

Figure. 3.10.4 – One-dimensional heap before and after 
shedding. Column 6 and the rightmost column 11 crumbled 

with "open" boundary conditions 

A variant of "closed" boundary conditions 2 in all directions 

is indicated. Of course, any combination of "open" and "closed" 

conditions is possible. Condition 2 can also be modified for a 

"real" pile in the corner of, say, a shoe box. The lattices on which 
self-organizing critical systems were built are also diverse, for 

example, experiments were carried out on square lattices in 

large dimensions, and exact analytical results were even 

obtained on hexagonal lattices. Similar cellular automata can 

also be built on irregular lattices. 

( , ) 3

( , ) ( , ) 4,

( , 1) ( , 1) 1,

( 1, ) ( 1, ) 1 
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   

    z x y

z x y z x y
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The correspondence between the value ( , )z x y and slope of 

the heap is not as clear-cut as in 1 D, since now the value of the 

slope ( , )z x y is the average slope along the diagonal of the 

system, and when shedding particles will start moving in both 

directions and . In the two-dimensional case, it is no longer 

possible to say that from an unstable state with ( , ) 4z x y the 

system will go into the same state, since the instability will 

propagate in both directions interdependently. The final state of 

the system will depend significantly on the initial conditions, but 

the properties of this resulting state, such as slope, will always 

be the same. 

There are two different ways to get a system in a state of 
self-organized criticality. Either by shedding the system from a 

random state c ( , ) 4z x y to an equilibrium state, or by pouring 

, 0z x y grains of sand onto a flat surface one by one at 

randomly selected points and performing the procedure 

according to rule 2 when necessary. You can determine the 

moment when the system reaches a critical level by the fact that 
the average slope of the heap will stop changing. The experiment 

shows that the properties of the systems obtained by both 

methods do not differ from each other. 

The results below are obtained on a square lattice in the 

two-dimensional case according to the previously defined rules 

and conditions. First, randomly selected , 4z x y , after which 

the "relaxation" of the heap was carried out and it crumbled to a 

stable state. On fig. 59 shows one such stable state on a 2D 500 

x 500 grid, where colors from black to white correspond to 

values ,z x y from 0 to 3. 

If at one of the most unstable points of the system (in our 

case , 3z x y ), start the process according to rule 2 with 

conditions 2, setting , 4z x y , i.e. add one grain of sand, then 

the system will begin to crumble, an avalanche of sand will roll. 

For each such point ,x y in the system, the area affected by 

shedding will be different. On fig. 3.10.4 shows several such 
avalanches obtained by shedding. The initial system was shown 

in Fig. 3.10.3. Avalanche centers are marked with black dots 

against the background of white snow avalanches, and pairs of 

x y
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numbers in brackets indicate the time of shedding and the size 
of the avalanche. 

 

Figure. 3.10.3 – Steady state 

Let us define ( )D s – the distribution function of the sizes of 

emerging avalanches. To obtain this function, at each point of 

the system, where , 3z x y we put , 4z x y and start the 

avalanche, we determine its area – , to obtain a sufficient 

number of avalanches, we process several systems in a self-

organized state in this way, obtaining them from a random initial 

state with , 4z x y . On fig. 61 a) shows the form of 

dependence ( )D s obtained by processing a set of systems of size 

500 x 500. The size distribution of avalanches obeys a power 
law: 

 (3.10.5) 

s

2( ) , 1,1. DD s s  
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Figure. 3.10.4 – Avalanches caused by shedding 

Similarly, it is possible to investigate the time 

characteristics of this process by introducing ( )D t - the 

distribution function of the times of shedding of these 

avalanches. In the general case, the area of the avalanche is 

greater than its shedding time t , since several grains of sand are 

shed at one moment. The distribution of avalanche development 

also obeys a power law: 

                           
(3.10.6) 

Undoubtedly, the indices and are related both to each 

other and to other indices characterizing the self-organized 
critical state. 

The size of the "avalanche" of news that occurs in 

information flows when a new topic appears sometimes seems 

unpredictable, but it is quite amenable to modeling. For 

example, the power-law distributions of the number of thematic 

publications are quite consistent with the above distributions of 
the sizes of the “sand” avalanches under consideration. In the 

last decade, the modeling of information processes using cellular 

automata methods and the theory of self-organized criticality 

have become widespread. 

s

2( ) , 0,43. DD t t  
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A 

 

b 

 

Figure. 3.10.5 – Distributions of (a) sizes of avalanches ( )D s and 

(b) times of their shedding ( )D t  

3.11. Percolation 

Percolation networks are well 

studied and important in practical 

terms. 

Let us consider one of the 
simplest formulations of the percolation problem. Given a square 

grid (infinite), each connection of which has a resistance 1r , for 
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convenience we will call such a connection black. Randomly, 
black (conductive) bonds are broken. We can say that in this 

case, black connections are replaced by white ones with 

resistance 2r . The task is to find such a concentration of 

black links cp at and above which there is a connected part of 

black links, along which you can get from one infinity to another 
without jumping over the white link. Such a connected part 

extending to infinity is called an infinite cluster. Of course, the 

real grid is always finite, therefore, in this case, it is assumed 

that its size is much larger than the so-called correlation length, 

in this case, different implementations of the black link 
structure obtained by random cutting have the same properties. 

The probability of special degenerate distributions of black 

bonds is negligible. Here there is an analogy with the random 

distribution of gas molecules in a certain volume. The probability 

that all the gas will be collected in one half of the volume is so 

unlikely that it is never taken into account. At the same time, if 
there are only two molecules, then this probability is equal to 

1/ 4 . 

In addition to the geometric formulation of the percolation 

problem – the emergence of an infinite black cluster, one can 

also propose a physical formulation of the problem, for example, 

about the flow of current through black bonds. Black bonds 

conduct current, white ones do not. It is necessary to determine 

the resistance (conductivity) of the grid as a whole. 

When cp p the conductivity of 

the entire grid as a whole G is not 

equal to zero (the current finds its way 

from one contact at "infinity" to another 

along the black infinite cluster). At

cp p  0G , and, accordingly, the 

resistance of the entire grid 

1/R G . 

Of course, in the theory of percolation it is not necessary to 

consider exactly a two-dimensional square grid. Any dimensions 

and types of grids (homogeneous on average) are possible. In 

addition, we can talk not only about the problem of connections, 

but also about the problem of knots, when all bonds are 

Snarskii A.A., 
Bezsudnov I.V., 
Sevryukov V.A. Transfer 
processes in 
macroscopically 
disordered media. – M.: 
URSS, 2007. – 304 p. 
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conductive, and conductive (black) nodes are randomly cut out 
with a given probability. 

As it turned out, the problem of percolation, which 

appeared in the formulation of an applied engineering problem of 

the flow of a gas or liquid through a porous filter, is one of the 

simplest and most illustrative examples of the theory of second-
order phase transitions and critical phenomena. So, many 

characteristics, described geometric and physical properties near 

the percolation threshold, cp behave in a universal way, are 

described by critical exponents, the numerical value of which 

does not depend on the type of grid. 

Let us consider some geometric characteristics of the 

percolation grid. There are many such geometric characteristics 
– the average number of clusters of size s , the distribution of 

clusters by size, the average size of a cluster, the power of an 

infinite cluster, the characteristics of various parts of an infinite 

cluster of the skeleton, skeleton, dead ends,...), etc. Here we will 
consider only some of the characteristics. The first of them is 

sn p the size distribution of final clusters, i.e. the number of 

clusters of s nodes (links) per one node (link) of the lattice. The 

second characteristic that suits well as an order parameter P p

is the power of an infinite cluster, the probability that an 

arbitrary node (link) belongs to an infinite cluster. The power of 

an infinite cluster P p is expressed in terms of sn p , for this it 

is enough to take into account that the probability of hitting a 

black node p is the sum of the probability of hitting an infinite 

cluster P p or any finite s

s

sn p : 

s

s

P p sn p p , (3.11.1) 

where: 

s

s

P p p sn p . (3.11.2) 
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Near the percolation threshold, cp the power of an infinite 

cluster behaves similarly to the order parameter in the theory of 

second-order phase transitions: 

, /c c cP p p p p p p . (3.11.3) 

The role of temperature – T and critical temperature – cT in 

phase transitions is now played by the concentration – of p well-

conducting bonds/sites (black phase) and the percolation 

threshold – cp . 

The proximity to the percolation threshold will be denoted 

by: 

c

c

p p

p
. (3.11.4) 

The considered analogy between the theory of phase 
transitions and the theory of percolation can be deepened by 

introducing into the theory of percolation an analogue of a 

dimensionless magnetic field – h . In the geometric 

characteristics of percolation systems considered here, this is 
done in a rather skillful and artificial way, the so-called 

Castellain-Fortuin demon is introduced – a black node outside 

the lattice, associated with each black node with probability 

1 exp h . The analogue of free energy in the theory of phase 

transitions can be written as 

, ,hs
s

s

G h n e  (3.11.5) 

where 
s

hs he e is the proportion of finite clusters of s nodes 

in which none of the nodes is associated with the Castellain-

Fortuin demon. 

The order parameter in the theory of phase transitions can 

be found from G as a derivative with respect to the field h , at

0h  
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0

,
h

G

h
 (3.11.6) 

and from (3.11.5) we find : 

0 0

,hs
s s

h s sh

G
sn e sn

h
 (3.11.7) 

which gives the main (singular) part P p (3.11.2): 

0

.s

hs

G
P p p sn p

h
 (3.11.8) 

At a zero field 0h , the order parameter P p below the 

percolation threshold cp p is equal to zero, which is completely 

analogous to the situation in the theory of phase transitions – at 

cT T a ferromagnetic state (magnetization 0m ) passes into a 

paramagnetic state ( 0m ). At 0h and at cT T there is a 

non-zero order parameter (3.11.5) "obliged" to the external 

magnetic field – h and therefore proportional to it. It is easy to 

see that the introduction of the Castellain-Fortuin demon also 

leaves the order parameter of the percolation theory P p non-

zero below the percolation threshold, i.e. and at cp p , there is 

an infinite cluster whose magnitude is proportional to h . 

Indeed, at, cp p formally there is no infinite black cluster, but 

at 0h ( 1h ) each black node is connected to the other 

through the Castellain-Fortuin demon with the probability 

1 1 1 ,he h h  (3.11.9) 

proportional to the field. 

Which means the existence of an infinite cluster ( 0P p

) proportional to h  
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~ .cP p p h  (3.11.10) 

Let us now turn to the physical characteristics in the 

percolation theory, which make it possible to explain in a much 

more visual way the main regularities of phase transitions. We 

will now assume that black bonds in the percolation network 

have resistance 1r , and broken (white) ones have resistance 

2r . At grid sizes L much larger than the so-called 

correlation radius, the influence of a particular random 

distribution of black and white bonds (random implementation 

of the structure) becomes insignificant and a well-defined value 

is the impedance – R . In order to abstract from this specific grid 

size ( L ), it is convenient to pass from the resistance of the entire 

sample (lattice) to the specific effective conductivity – e : 

2

1
,

d

e

L
R

L
 (3.11.11) 

where is 2,3...d the grid dimension. 

By definition, on sizes of the order of and more than the 

correlation radius, all the properties of the network as a whole 

(in this case, the specific effective conductivity) are the same, 

respectively, the main, main elements of their flow structure 

should be the same. 

 As an order parameter describing the phase transition, it 

is convenient to introduce a quantity proportional to the effective 

conductivity – e . As for the order parameter, P p the effective 

conductivity e at cp p is not equal to zero, but below the 

threshold at is 2r equal to 0e cp p . This behavior is 

easy to explain – above the flow threshold, current can flow from 

one contact to another (which can be formally spaced even for an 

infinite distance) passing through black – conductive, bonds. 

This means that there is an infinite black cluster. At, 

cp p only finite clusters exist, with a size less than the 

correlation length; they are isolated from each other because 

2r and therefore no current can pass through the grid. That. 
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at, 2r the effective conductivity is zero 0e cp p , and if 

it 2r is large, but finite, i.e. 1 2/ 1h r r , but not zero, then the 

current will be able to flow from one end cluster to another. In 

this case, of course, the conductivity of the grid will be 

proportional to h  ~e cp p h and at 0h effective 

conductivity 0e cp p . Thus, there is no need to introduce 

the demon of Castellain-Fortuin, his role is played by white 

resistances with a large but finite resistance. The role of the 

external field is now played by the relation 1 2/ 1h r r . 

Critical behavior near the percolation threshold is 

exhibited not only by the density of the infinite cluster  P p , 

but also by many other important characteristics of the 

percolation network, for example, the correlation length, which 

diverges when approaching cp :
 

 ~ cp p





 , (3.11.12) 

where  is the critical index of the correlation length. 

The specific effective conductivity also behaves critically 

ep . Near the percolation threshold above  cp p and below, 

 cp p the following occurs: 

1

1 2

, ,

, .

t

c

e q q

c

p p

h p p

 
 

 

 


   
 (3.11.13) 

The analogy between a second-order phase transition and 

a percolation transition is manifested here in the fact that if the 

critical temperature – cT and percolation thresholds – cp , for 

each material, or, accordingly, the lattice has its own numerical 

value, then the critical exponents are universal, depending only 

on the dimension of the problem, but independent of the lattice 
type. 

Let us consider the question of applying the 

renormalization group method for calculating critical exponents. 
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Near the percolation threshold, the structure of connected 

parts of the percolation network (an infinite cluster, at cp p

and "lattice animals" at cp p ) has a fractal structure, i.e. are 

statistically self-similar. Thus, passing from one scale to another 

and requiring scale invariance, one can obtain an approximate 

value of the critical exponents. Below we consider several 

examples of using the renormalization group method to calculate 

the percolation thresholds and the critical index of the 
correlation length  . 

  

Example 1. Triangular Lattice Leak Threshold, Node 

Problem 

For convenience, we will talk in terms of current flow – a 
conductive node (black) conducts current, a non-conductive 

node (white) does not conduct, all connections are conductive. 

Figure 3.11.1 - a triangular lattice with the designation of 

conductive (black) and non-conductive (white) nodes, with a 

triangular cell size equal to b ; b – renormalized lattice, 

triangular cells (indicated in gray) now represent new nodes, the 

connections between which are indicated by thick black lines. 

The new nodes form a new (renormalized) triangular lattice with 

cell size 3b b   . 

The rules for transforming black nodes are as follows: the 

gray triangle of the lattice goes to the black node of the 

renormalized one if it or the node has black nodes, otherwise 

it goes to the white, non-conducting node. 

The probability of a black node in a triangular lattice is p , 

so the probability of meeting a conducting black node in the new 

renormalized lattice is  3 23 1p p p  , where the first term 

"owes" its origin to a gray triangle with three black nodes, and 

the second to two. At the same time, since the arrangement of 

black and white nodes in the second case is possible in three 

different ways, the second term has a factor of 3. 

a

2 3
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Figure. 3.11.1 – Schematic representation of black (well 
conducting phase) clusters 

Thus, the probability of meeting a black node in the 

renormalized lattice p  is equal to: 

 3 23 1p p p p     . (3.11.13) 

 A network that is at the percolation threshold under a 

renormalization group transformation remains at the threshold: 

 c cp p p  , (3.11.14) 

those. cp is the fixed point of the transformation. Then from the 

equation connecting each other pand p we get: 

 3 23 1c c c cp p p p     (3.11.15) 
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 This equation has three solutions 1cp  , 0cp  , 

1/ 2cp  . The first two of them are trivial – a completely "white" 

or "black" lattice remains so. Third decision 

1

2
cp  , (3.11.16) 

and is the desired triangular lattice percolation threshold for the 

knot problem. 

In this example, unlike several others, everything works 

out so well that the expression for the percolation threshold 

obtained by the renormalization group method coincides with 

the exact value. 

 Let us now show how to express the critical index of the 

correlation length –  . 

Let in some lattice 0 cp p


 


  , then in renormalized 

0 cp p


 


   and 
a

   , where ba
b
 . Thus: 

c ca p p p p
  

    , (3.11.17) 

whence for the critical index we find: 

ln
1 ln

,
ln ln

c

cc

c

p p

p pp p

a a p p

 

 
  







. (3.11.18) 

Directing the concentration to the threshold cp for
 
can 

be written: 

lim
c

c

c

p p
c p p p

p p dp

p p dp



 

 
 


, (3.11.19) 

and for the critical index a simple expression is obtained 
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 ln /1
.

ln

cp
dp dp

a


  

(3.11.20) 

 Earlier, for a triangular lattice it was obtained 

 3 23 1p p p p     and 1/ 2cp  , whence: 

 
ln 1 ln3

1.355.
ln 2 ln 3 / 2

a
v

b
    (3.11.21) 

The exact value (which can be obtained for a given lattice) 

4 / 3 1.33   , etc. application of the renormalization group 

method gives a very good approximation. 

 

Example 2. Square lattice, constraint problem 

One of the difficulties in applying the renormalization 

group method is the definition of a renormalizable cell and the 

percolation requirements for it. In a triangular lattice, this 

difficulty was not present, the cell was chosen to be triangular, 

and the percolation was determined by the presence of two or 

more black nodes. In the case of a square lattice, more accurate 

reasoning is required. By a percolating cluster, we mean both a 

cluster that connects "up and down" and a cluster that connects 

"left and right". Therefore, we will choose the flowing state for the 

cell, for example, as flowing “from left to right”. Then, as a cell of 

a square lattice, one can choose the configuration shown in Fig. 

3.11.2. 

 

Figure. 3.11.2 – Square lattice cell 
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Cell of a square lattice, for the study of the flow "left-to-

right". a and b are left contacts, c and d are right contacts. Each 

of the bonds – ae, ec,… is conductive with probability p . 

When renormalized, the cell turns into one link: 

 

Accordingly / 2a b b  . 

Below, with indication of the probability of leakage, all cell 

configurations conducting “from left to right” are shown; 3.11.3. 

 

 

Figure. 3.11.3 – Conductive configurations 

Thus, the probability of obtaining a leaky renormalized 

configuration is: 
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     
2 35 4 3 25 1 8 1 2 1p p p p p p p p        . (3.11.22) 

Substituting into the right and left parts, cp p p   it is 

easy to make sure that the solution of the resulting equation 
gives: 

1

2
cp  . (3.11.23) 

You can immediately calculate the critical index of the 

correlation length: 

ln
,

ln
cp p

b dp

dp



  


, (3.11.24) 

taking the derivative of  p p p  , by p
 

and substituting 

1/ 2cp p  . We find: 

 4 3 2

1
2

13
10 20 6 4

8c

c

p p
p p

dp
p p p p

dp  



     . (3.11.25) 

Thus: 

 
ln2

1.43,
13ln

8

   (3.11.26) 

n at the exact value of 4
3

  . 

The renormalization group method does not always give 

such good results. For clarification, it is necessary to take large 

sizes of the renormalizing cell, for example, instead of a cell with 

2b  take a cell with 5b  . 

At first glance, this clarification does not represent a 

significant complication. However, in fact, this is not just a 

significant, but a fundamentally significant complication, since 
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instead of 32 -x for the case 2b   combinations of which 20  

leaky, in case 5b  the number of combinations is equal to 

25 72 3 10  , from which it is first necessary to choose leaky ones, 

and then also find the probability of their occurrence. 

3.12. Correlation and fractal analysis 

3.12.1. The concept of a fractal 

The term fractal was proposed by 

Benoit Mandelbrot (B. Mandelbrot) in 

1975 to denote irregular self-similar 
mathematical structures. The basic 

definition of a fractal given by 

Mandelbrot was: “A fractal is a structure 

that consists of parts that are in some 

sense similar to the whole.” It should be 

recognized that this definition, due to its 
laxity, is not always correct. Many 

examples of self-similar objects that are 

not fractals can be cited, for example, a 

picture of railroad tracks descending to the horizon. 

In the simplest case, a small part of the fractal contains 
information about the entire fractal. A rigorous definition of self-

similar sets was given by J. Hutchinson (J. Hutchinson) in 1981. 

He called a set self-similar if it consists of several components 

similar to the entire set, i.e. components obtained by affine 

transformations – rotation, compression and reflection of the 

original set. Note that such a strict definition is unproductive. In 
many cases, subsets are studied in which the component of 

similarity to the entire set is only approximate, and in the 

Mandelbrot set itself, the components are only similar (and 

sometimes not similar) to the entire set. 

However, self-similarity is a necessary but far from 
sufficient property of fractals. After all, it is impossible, in fact, to 

consider a point or a plane drawn by cells as a fractal. The main 

feature of fractal objects is that the “standard” topological 

dimension is not enough to describe them d , which, as you 

know, is equal to 1 for a line ( 1d  - a line is a one-dimensional 

Mandelbrot B. Fractal 
geometry of nature. – 
M.: Institute of 
Computer Research, 
2002. – 656 p. 

     Mandelbrot B. 
Fractals, chance and 
finance. Moscow: 
Regular and Chaotic 
Dynamics, 2004. 256 
p. 
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object), for a surface 2d  , etc. Fractals are characterized by a 

geometric "indentation". 

Therefore, a special concept of 
fractal dimension introduced by 

F. Hausdorf (F. Hausdorf) and 

A.S. Besikovich. As applied to ideal 

objects of classical Euclidean geometry 

(lines, planes…), it gave the same 

numerical values as the topological 
dimension, but the new dimension had a 

finer sensitivity to all sorts of 

imperfections in real objects, making it 

possible to distinguish and individualize 

what had previously been faceless and 
indistinguishable. The dimension of 

Hausdorff-Besikovich just allows you to 

measure the degree of "indentation". The 

dimension of fractal objects is not an 

integer characteristic of the usual 

geometric objects. At the same time, in 
most cases, fractals resemble objects 

that densely occupy real space, but do 

not use it completely. 

Let there be a set G in a Euclidean 

space of dimension d . This set is 

covered with cubes of dimension d , 

while the length of the edge of any cube 

does not exceed some value  , i.e. i  

. 

, depending on some parameter d , and  over all elements 

of the coverage is introduced: 

. (3.12.1) 

Let's define the lower bound of this sum: 

 
,

inf .
i

d

d i

i

L
 

 


  (3.12.2) 

( ) d

d i

i

l  

 

Felix Hausdorff 
(1868-1942) 

 

 
 

Abram Samoylovich 
Besikovich 

(1891-1970) 
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When decreasing the maximum length  , if the parameter 

d is large enough, it will obviously run: 

(3.12.3) 

For some sufficiently small value of the parameter, the 

following d will be performed: 

(3.12.4) 

Intermediate, critical value xd , for which: 

 
(3.12.5) 

and is called the Hausdorff-Besikovich dimension (or fractal 
dimension). For simple geometric objects, the Hausdorff-

Besikovich dimension coincides with the topological one (for a 

segment xd = 1, for a square xd = 2, for a cube xd = 3, etc.) 

Despite the fact that the Hausdorff-

Besikovich dimension is perfectly defined 

from a theoretical point of view, for real 

fractal objects, the calculation of this 

dimension is very difficult. Therefore, a 
somewhat simplified indicator is 

introduced – capacitive dimension cd . 

When determining this dimension, 
cubes (squares, segments...) with faces of the same size are 

used. In this case, of course, it is true: 

, (3.12.6) 

 where ( )N  is the number of cubes covering the area G . By 

taking the logarithm and passing to the limit with a decrease in 

the face of the cube ( 0 ), we obtain: 

0
lim ( ) 0.dL







0
lim ( ) .dL







0

0, ,
lim ( )

, ,

x

d

x

d d
L

d d





 

 

( ) ( ) cd

dL N  

 
Grinchenko V.T., 
Matsypura V.T., 
Snarskii A. A. 
Introduction to 
nonlinear dynamics. 
Chaos and fractals. – 
M.: LKI, 2007. – 264 

p. 
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(3.12.7
) 

if this limit exists. It should be noted that in most numerical 

methods for determining the fractal dimension, exactly is used 

cd , while it must be taken into account that the condition is 

always true: . For regular self-similar fractals, the 

capacitive dimension and the Hausdorff-Besikovich dimension 

coincide; therefore, terminologically they are often not 
distinguished and they simply speak of the fractal dimension of 

an object. 

When carrying out practical calculations of the fractal 

dimension for real objects, the following methodological 

technique is used. Suppose that at some stage of the fractal 

coverage it was necessary to use ( )N  cubes with faces of size  , 

and at another stage, ( ')N  elements with faces of size ' . In 

view of the expected power dependence, it is true: 

   
1 1

~ , ' ~ ,
'i id d

N N 
 

 
(3.12.

8) 

from where the value cd can be evaluated as: 

  .                 (3.12.9) 

3.1 2.2. Abstract fractals 

Let us consider the principles of formation of several 

abstract fractal objects that have pronounced self-similarity 

properties. 

The construction of the fractal set, snowflake Helge von 

Koch (H. Von Koch), begins with a regular triangle, the side 

length of which is equal to 1. The side of the triangle is 

considered the base link. Further, at any iteration step, each 

link is replaced by a generating element – a broken line, which 

consists along the edges of the original link of segments 1/3 of 

0

log ( )
lim ,

log
c

N
d






 

x cd d

 
 

log ( ) ( ')

log '
c

N N
d

 

 
 
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the length of this link, between which two sides of a regular 
triangle are placed with a side also 1/3 of the length of the link. 

 

 

 

 

 

Niels Fabian Helge 
von Koch 

(1870-1924) 
 
 
 
 

 

 

 

 

The first 4 
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All segments – sides of the resulting polyline 
are considered basic links for the next iteration. The 

curve obtained as a result of the nth iteration for 

any finite n is called a prefractal, and only when n tends to 

infinity does the Koch curve become a fractal. The fractal set 

obtained as a result of the iterative process is a line of infinite 
length, which limits the finite area. Indeed, at each step, the 

number of sides of the resulting polygon increases by a factor of 

4, while the length of each side decreases only by a factor of 3, 

i.e. the length of the polygon at the nth iteration is equal to 

 43
3

n

 and tends to infinity as n . The area under the curve, if 

we take the area of the first generating triangle as a unit, is 

equal to: 

0

1 4 8
1 1,6.

3 9 5

k

k

S




 
    

 
 (3.12.10) 

Let's calculate the fractal dimension of the Koch snowflake. 

Let the side length of the original triangle be equal to one. In this 

case, the role of the cubes covering the figure in question is 

played by line segments. Then at the zero step we have: 

1, ( ) 3N    . For the second step it is true: 

. These data are sufficient to estimate the 

fractal dimension: 

 
(3.12.11) 

' 1/3, ( ') 12N  

 
 

 
 

log ( ) ( ') log 3/12 log4
~1,26

log ' log 3 log3
c

N N
d

 

 
    

generations of the 
Koch snowflake 

 

 

Vaslav Francis 
Sierpinski 
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The self-similar fractal 
proposed in 1915 Vaslav Serpinski, is formed according to the 

following rules. The initial set corresponding to the zero step is 

an equilateral triangle. Then it is divided into four regions by 

connecting the seridines of the sides of the original triangle with 

line segments. Then the interior of the central region of the 
original triangle is removed – a small internal "inverted triangle". 

Then, in the next iteration step, this process is repeated for each 

of the three remaining triangles. Continuing the described 

procedure to infinity, a set is formed, called the Sierpinski 

napkin. 

Obviously, the fractal dimension of Sierpinski's napkin is:

     log / ' log3
1,58.

log( / ') log2
c

N N
d

 

 
     (3.12.12) 

 

This fractal is interesting because the area it 

occupies is zero. To substantiate this fact, we 

calculate the total area of the parts excluded during 

construction. At the first step, a quarter of the area of 
the original triangle is discarded, at the second step, 

a quarter of the area is removed from each of the 

three triangles, and so on. Thus, the total remote 

area is calculated as the sum of the series (the area of 

the original triangle is taken equal to one): 

2 3

1 3 1 3 3 1
...

4 4 4 4 4 4

1 3 3 3
1 ...

4 4 4 4

1 1
1.

4 1 3/ 4

S        

      
            

       

  


 (3.12.13) 

Thus, the excluded area is the same as the area 

of the original triangle.

 

 

(1882-1969) 
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Figure. 3.12.1 – Mandelbrot set 

The algorithm for constructing the 

Mandelbrot set (Fig. 29) is based on an 

iterative calculation according to the formula: 

2

1 , 0, 1, 2, ...,i iZ Z C i     (3.12.14) 

where 
1,i iZ Z

and C are complex variables. 

Iterations are performed for each 

starting point of a rectangular or square 

region – a subset of the complex plane. The iteration process 

continues until it 
iZ goes beyond the circle of a given radius, the 

center of which lies at the point (0,0), or after a sufficiently large 

number of iterations. Depending on the number of iterations 

during which
iZ  stays inside the circle, point colors are set  

(Fig. 3.12.1). If iZ  remains inside the circle for a sufficiently large 

number of iterations, then this pixel is painted black. The 

Mandelbrot set contains precisely those points that do not go to 

infinity during an infinite number of iterations. Since the 
number of iterations corresponds to the color number, the 

points that are closer to the Mandelbrot set have a brighter 

color. 

     In the 80s of the last century, the method of "Systems of 

Iterative Functions" (Iterated Functions System – IFS), which is a 

simple means of obtaining fractal structures. IFS is a system of 
functions that map one multidimensional set to another. The 

C

C

 

 

Construction of the 
Sierpinski Napkin 
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simplest implementation of IFS is an affine plane 
transformation: 

 (3.12.14) 

where are the previous values of the coordinates, 

are the new values, , , , ,A B C D E and F are the coefficients. 

As an example of the use of IFS to build fractal structures, 

we can cite the "dragon" of Harter-Hateway (3.12.2), formed 

using the Java applet provided on the Internet at 

http://www.fractals.nsu.ru/fractals.chat.ru/ifs2.htm (Fig. 
3.12.1). Using IFS to compress conventional images, such as 

photographs, is based on local self-similarity detection (unlike 

fractals where global self-similarity is observed). 

 
 

 
a b c 

 Figure. 3.12.2 – "Dragon" Harter-Heituey: a) – the second step of 

the iteration; b) – the sixth step; c) the twelfth step 

In the 80s, M. Barnsley and A. Sloane proposed the idea of 
compressing and storing graphic information, based on 

considerations from the theory of fractals and dynamic systems. 

Based on this idea, an algorithm for fractal information 

compression was created, which allows you to compress some 

samples of graphic information by 500-1000 times. Each image 

is encoded with several simple affine transformations. 
 According to the Barnsley algorithm, pairs of areas are 

selected in the image, the smaller of which is similar to the 

larger one, and several coefficients are stored that encode the 

transformation that converts the larger area into a smaller one. 

In this case, it is required that a plurality of such areas cover the 
entire image. 

' ,

' ,

  

  

X AX BY C

Y DX EY F

,X Y ', 'X Y
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One of the best examples of fractals in nature is the 
structure of coastlines. Indeed, on a kilometer stretch, the coast 

looks as cut as on a hundred-kilometer one. Experience shows 

that the length of the coastline depends on the scale at 

which measurements are taken, and increases with the decrease 

of the latter according to a power law . For 

example, the fractal dimension of the UK coastline (Fig. 31) is

1.52.  

3.12.3. Information flows and fractals 

The application of the theory of 

fractals in the analysis of information 

flows allows us to look at the patterns 

that form the basis of computer science 

from a general position. It is known that 
many information retrieval systems that 

include elements of cluster analysis allow 

you to automatically detect new classes 

and distribute documents among these 

classes. Accordingly, it is shown that 

thematic information arrays are self-
similar developing structures, however, 

their self-similarity is valid only at the 

statistical level (for example, the 

distribution of thematic clusters of 

documents by size).  
What determines the nature of the 

fractal properties of information flows 

generated by such cluster structures? 

On the one hand, the parameters of rank 

distributions, and on the other hand, the 

mechanism for the development of 
information clusters. The appearance of 

new publications increases the size of 

already existing clusters and causes the 

formation of new ones. 

Fractal properties are also 
characteristic of clusters of informational 

websites on which documents are 

published that correspond to certain 

topics. 

L ,l

1 , .L l const   

 

Coast of Norway at 
different scales 

(according to 
maps.google.com) 
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The volumes of messages in thematic information flows 
form time series, the study of which is increasingly using the 

theory of fractals. 

Studying the characteristics of time series generated by 

information flows, the messages of which reflect the processes 

taking place in the real world, makes it possible to predict their 
dynamics, reveal hidden correlations, cycles, etc. 

The results of real numerical experiments are given as 

illustrations. As a basis for the study of the fractal properties of 

the series, reflecting the intensity of publications of thematic 

information flows, the system of content monitoring of news from 

Internet websites InfoStream was used. The subject of the 
studied information flow was determined by a request to this 

system. To illustrate, an analysis was made of online media 

reports – an array of 1,4,069 documents published since 

January 1, 2006. December 31, 2007, on the subject of 

computer virology, satisfying the request: 

 
"computer virus" OR "virus attack" OR (antivirus AND 

(program OR utility OR  

Windows OR linux)) 

determined by daily discreteness (Fig. 3.12.3). 

Let us dwell in more detail on some methods for analyzing 
this type of time series, generated, in particular, by information 

flows. 

3.12.4. DFA Method  

One of the universal approaches to identifying self-similarity 
is based on the DFA method (Detrended Fluctuation Analysis) is 

a universal method for processing series of measurements. 

DFA method is a variant of the analysis of variance that 

allows you to explore the effects of long-term correlations in non-

stationary series. In this case, the root-mean-square error of the 

linear approximation is analyzed depending on the size of the 
approximation segment. 



 188 
 

 

Figure 3.12.3 – The number of thematic publications (y-axis) in 
the context of dates – the ordinal number of the day (x-axis) 

 

One of the universal approaches to 

identifying self-similarity is based on the 

DFA method (Detrended Fluctuation 
Analysis) is a universal method for 

processing series of measurements. 

DFA method is a variant of the 

analysis of variance that allows you to 

explore the effects of long-term 

correlations in non-stationary series. In 
this case, the root-mean-square error of 

the linear approximation is analyzed depending on the size of the 

approximation segment. Within the framework of this method, 

the data is first reduced to zero mean (subtraction of the mean 

value F from the time series nF , ): 

                    (3.12..16) 

Then a series of ( )y k values 1,...,k N   split into non-

overlapping segments of length n, within each of which the least 

squares method determines the equation of a straight line 

approximating the sequence ( )y k . The found approximation 

( )ny k ( ) is considered as a local trend.  

1, ...,n N

1

( ) .


   
k

i N
i

y k F F

( )n n ny k a k b 

Peng C.-K., Havlin S., 
Stanley HE, 
Goldberger AL 
Quantification of 
scaling exponents and 
crossover phenomena 
in nonstationary 
heartbeat time series. 
Chaos. – Vol 5. – 
1995. – P. 82. 
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 Next, the root-mean-square error of the linear 
approximation D (n) is calculated over a wide range of n values : 

.  (3.12.17) 

In the case when the dependence has a power-law 

character , i.e. the presence of a linear section at a 

double logarithmic scale , we can talk about the 

existence of scaling. 

As can be seen from fig. 3.12.4, the values for the 

selected information flow depend in a power-law manner on , 

i.e. on a double logarithmic scale, this dependence is close to 

linear.   

5.12.5. Correlation analysis 

If denoted by  member of the number 

of publications series (the number of emails 

received, for example, per day ), 

then the autocorrelation function for this series is defined as: 

 (3.12.18) 

where m is the mean value of the series . 
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Figure 3.12.4 – Dependence D (n) of a series of observations 

(ordinate axis) on the length of the approximation segment n 

(abscissa axis) in a logarithmic scale ( =0.7) 

It is assumed that the series may contain a hidden 
periodic component. 

It is known that the autocorrelation 

function has the property that if a hidden 

periodic component exists, then its value 
asymptotically approaches the square of the 

mean value of the original series. 

There is a well-known theorem that if the considered series 

is periodic, i.e. can be presented as: 

                         (3.12.19) 

then its autocorrelation function will be: 

                        (3.12.20) 

i.e. _ the autocorrelation function of the periodic series is also 

periodic, having the same frequency, but without the phase 

angle . 

Consider a number series , which is the sum of some 

meaningful component and a sinusoidal signal : 

                      (3.12.21) 
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Let's find the autocorrelation function for this series (the 

values are reduced to the average  and divided by standard 

deviations): 

 

(3.12.22) 

Obviously, the first term is a non-periodic function, 

asymptotically tending to zero. Since there is no mutual 

correlation between and , the third and fourth terms also 

tend to zero. Thus, the non-zero contribution is the second term 

– signal autocorrelation . Those. the autocorrelation function 

of the series remains periodic. 

As an illustration, consider an information flow model that 
considers a time series corresponding to the number of new 

messages in the network. It is assumed that the daily number of 

messages in the network grows exponentially (with a very small 

exponential value), and this number is superimposed by 

fluctuations associated with the weekly cyclicity in the work of 
information sources. A certain element of randomness is also 

taken into account, expressed by the corresponding deviations. 

To obtain the corresponding time series, the values of the 

function were considered: 

  
                 (3.12.23) 

which implements the simplest information flow model – the 

exponent is responsible for the increase in the number of 

publications over time (general trend), the sine is for the weekly 

frequency, the parameter is for random deviations. The 

number of publications cannot be a negative number. On fig. 

3.12.5 shows the graph of the model. 
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The original series was processed: 
reduced to zero mean and normalized (each 

term divided by the mean). After that, the 

correlation coefficients were calculated, 

which for series of measurements with 

length are calculated by the formula: 

 
(3.12.24) 

where is the autocorrelation function; - dispersion. 

 

Figure. 3.12.5 – Flow model with exponential growth 

(abscissa – variable - day, ordinate – variable - number of 

publications) 

On fig. 3.12.6 shows a graph of the values of the 
correlation coefficients (abscissa axis – variable k, ordinate axis – 

correlation coefficient . 

A graphical representation of the correlation coefficient for 

a series of observations corresponding to the dynamics of the 

real information flow of web publications indicates the 

invariance of the correlation properties by day of the week (Fig. 

3.12.7). At the same time, the correlation coefficients of a series 
of observations averaged over weeks are approximated by a 

hyperbolic function that characterizes the long-term dependence 

of the original series members (Fig. 3.12.8). 
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Figure. 3.12.6 – Values of model correlation coefficients 

 

Figure. 3.12.7 – Correlation coefficients of a series of 

observations (ordinate axis) depending on (abscissa axis) 

 

Figure. 3.12.8 – Correlation coefficients of a series of 

observations   (y-axis) averaged over weeks depending on 

(abscissa) 

( )R k k
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3.12.6. Fano factor 

To study the behavior of processes, it 

is customary to use another indicator – the 

dispersion dispersion index (IDC), the so-

called Fano factor. This value is defined as 
the ratio of the variance of the number of 

events  on a given observation 

window k to the corresponding 

mathematical expectation : 

 (3.12.25) 

For self-similar processes, the 

following relation holds: 

 (3.12.26) 

where and are constants. 

3.12.7. R/S analysis. Hurst exponent 

Hurst exponent (H. E. Hurst) –  is related to the 

coefficient of the normalized range , where is the “range” 

of the corresponding time series calculated in a certain way, and 

is the standard deviation. Hurst experimentally found that for 

many time series it is true: . 

It is proved that the Hurst exponent is related to the 

traditional "cellular" fractal dimension by a simple 
relationship: 

.   (3.12.27) 

The condition under which the Hurst exponent is 

associated with the fractal "cell" dimension in accordance with 
the above formula is defined by E. Feder as follows: therefore, 

the relationship is valid when the structure of the curve 

describing the fractal function is examined with high resolution, 

i.e. in the local limit. Another important condition is the self-

affinity of the function.       
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The Hurst exponent 
characterizes the persistence – the 

propensity of the process to trends (in 

contrast to the usual Brownian 
motion). The value H > ½ means that 

the dynamics of the process directed 

in a certain direction in the past, most 
likely, will entail the continuation of 
movement in the same direction. If H < 

½, then the process is predicted to 
change direction. H = ½ means 

uncertainty – Brownian motion. 

In particular, to study the fractal 
characteristics of thematic information 

flows for time series 

composed of the number of messages 

published over a period of time from 

to , the value of the Hurst 

exponent was studied, determined from the ratio: 

                   (3.12.28) 

Here is the standard deviation: 

                    (3.13.29) 

                                    (3.13.30) 

and - the so-called scope: 

 (3.12.31) 

Where 

 (3.12.32) 

Studies of the fractal properties of measurement series 

obtained as a result of monitoring thematic information arrays 

from the Internet indicate that the indicator takes values in 

the range of 0.65 0.75, i.e. much more than ½. Therefore, it can 
be argued that in this case persistence is found (the existence of 
long-term correlations that can be associated with the 

manifestation of deterministic chaos). It turns out that the series 

has a fractal dimension equal to D = 2 – H 1.35 1.25.  
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Studies of thematic information flows confirm the 
assumption of self-similarity and iteration of processes in the web 

space. Publications, citations, direct references, etc. generate self-

similarity, which manifests itself in stable statistical distributions 

and well-known empirical laws. 

3.13. Pareto-Zipf laws 

Analyzing social processes, V. Pareto 

considered the social environment as a 
pyramid, at the top of which are some 

people representing the elite. As a result of 

research, he mathematically formulated the 

relationship between the amount of income 

and the number of people who receive it. 

Pareto in 1906 found that about 80% of the 
land in Italy belongs to only 20% of its 

inhabitants. He came to the conclusion 

that the parameters of the distribution 

obtained by him are approximately the 

same and do not differ fundamentally in 
different countries and at different times. Exactly the same 

Pareto pattern is observed in the distribution of income between 

people. 

Pareto income distribution is described by the equation 

, where  is the amount of income, is the number of 

people with income equal to or greater than , and are the 

distribution parameters. In mathematical statistics, this 

distribution was named Pareto, while natural restrictions on the 

parameters are assumed: .  

The Pareto distribution has the stability property, i.e. the 

sum of two random variables that have a Pareto distribution will 

also follow this distribution.  The observed rule, called "Pareto's 

law" or "the 80/20 principle", is applicable in very many areas. 

For example, in an information search, it is enough to identify 
20% of the most important keywords to find 80% of the required 

documents, and then expand the search or use the "find similar" 

option to complete the task. Another example: 80% of the visits 

to a website come from only 20% of its web pages. 
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When building queuing systems, including information 
retrieval systems, it is necessary to take into account the fact 

that the most complex functionality of the system, the 

implementation of which takes 80 or more percent of labor costs, 

will be used by no more than 20 percent of users of this system. 

In a strict formulation, this effect is called the Pareto 

principle. Assume that the sequence corresponds 

to the incomes of individual people. After ranking this sequence 

in descending order, a new sequence is obtained 

(elements are arranged in descending 

order). 

Suppose that is the total number of people whose 

income is at least , i.e. . Then the Pareto rule can be 

rewritten as follows: 

. (3.13.1) 

Where: 

 

(3.13.2) 

 

The sum of the first ( ) values of the 

quantity is considered , i.e. The total income of the richest 

people is : 

 (3.13.3) 
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(3.13.4) 

In dimensionless variables - and 

the last equality has the form (see Fig. 23): 

 . (3.13.5) 

 

Figure 3.13.1 – Pareto distribution for different parameter 

values: dependence  for three cases: ,

 

The value - in our example – the relative amount of 

income received by the first in rank people, whose share 

(relative to all people) is . 
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J. Zipf studied the use of the 
statistical properties of language in text 

documents and identified several empirical 

laws, which he presented as empirical 

evidence of his "principle of least effort". 

He experimentally showed that the 
distribution of words in a natural language 

obeys a law that is often cited as Zipf's 

first law relating to the distribution of 

word frequency in a text. This law can be 

formulated as follows. If for some rather 

large text we make a list of all the words 
that are found in it, and then rank these 

words in descending order of the 

frequency of their occurrence in the text, 

then for any word the product of its rank 

and frequency of occurrence will be a 

constant value:, where is the 

frequency occurrence of the word in the 
text; is the rank of the word in the list; 

is an empirical constant value (Zipf coefficient). For Slavic 

languages in particular, the Zipf coefficient is approximately 

0.06-0.07. 

The above dependence reflects the fact that there is a small 

vocabulary that makes up the bulk of the tokens of the text. 

These are mostly official words. For example, given in the 

monograph by K.D. Manning and G. Schutze's analysis of the 

novel "Tom Sawyer" made it possible to identify 11,000 English 
words. At the same time, twelve words were found (the, and, 

etc.), each of which covers more than 1% of lexemes in the novel. 

Zipf explained the hyperbolic distribution by the "principle 

of least effort", assuming that when creating a text, less effort is 

spent on repeating some words than on using new ones, i.e. to 

appeal to "working memory, not long-term memory." 
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Zipf formulated another pattern, 
which is that the frequency and number of 

words that enter the text with a given 

frequency are also related by a similar 

relationship, namely: 

                                  

(3.13.6) 

where is the number of different 

words, each of which is used in the text 

times, is some normalization constant. 

There is a simple quantitative model 

for determining the dependence of 
frequency on rank. Let's assume that 

random text is generated by a monkey on a typewriter. With 

probability a space is generated, and with probability 

other characters are generated, each of which has an equal 

probability. It is shown that the text obtained in this way will 

give results similar in form to the Zipf distribution. 

A more complex model for generating a random text that 
satisfies Zipf's second law was proposed by G.A. Simon in 1955. 

According to this model, if the text has reached word length, 

then what the th word of the text will be is determined by 

two assumptions: 

1. Let be the number of different words, each of 

which was used once among the first words of the 

text. Then the probability that the -th will be a 

word that was previously used once is proportional 

to – the total number of occurrences of all 

words, each of which was previously used once. 

2. With probability  The th word will be the new 

word. 

Assumption 1 implies: 

, (3.13.6) 

where is the coefficient of proportionality. 
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of morphological 
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Similarly, assumption 2 leads to the equation: 

                     
(3.13.7) 

From the condition that the probability of generating 

the th word is 1, we have: 

. (3.13.8) 

Given what we have: 

                                                         

(3.13.9) 

In addition, one more assumption is introduced, which 

consists in the fact that for all the following is true: 

                                               

(3.13.10) 

It follows from the last assumption that 

                        

(3.13.11) 

In this case, it does not depend on and, taking into 

account the previous equations: 

                                             

(3.13.12) 

Passing to the function = for , we 

have: 

                                                   

(3.13.13) 

Using the last equation
 
once we get: 

 (3.13.14) 
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By introducing the notation, the last equation 

can be rewritten: 

 

(3.13.15)

 

Considering that at and denoting 

, we finally have: 

                                                         
(3.13.16) 

The Zipf distribution is often distorted 

in practice due to insufficient volumes of 

text corpora, which leads to the problem of 

estimating the parameters of statistical 
models. On the other hand, the 

relationship between rank and frequency 

was taken by Salton in 1975 [116] as a 

starting point for choosing terms for 

indexing. Next, he considered the idea of 

sorting words according to their frequency 
in the corpus. As a second step, high 

frequency words can be eliminated because 

they are not good distinguishing features 

for collection documents. In the third step, 

terms with a low frequency defined by some threshold (for 
example, words that occur only once or twice) are removed 

because they occur so infrequently that they are rarely used in 

user queries. Using this approach, you can significantly reduce 

the size of the search engine index. A more principled approach 

to the selection of index terms – taking into account their weight 

values. In weight models, mid-frequency terms turn out to be the 
most significant, since they are the most significant in the 

selection of a particular document (the most frequent words 

occur simultaneously in a large number of documents, and low-

frequency terms may not be included in documents that are of 

interest to the user). 

Another empirical law formulated by Zipf is that the 

number of meanings of a word correlates with the square root of 
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its frequency. It was assumed that infrequently used words were 
less ambiguous, which confirms that high-frequency words are 

not suitable for indexing information retrieval systems. 

Zipf also determined that the length of a word is inversely 

proportional to its frequency, which can be easily verified by 

simply analyzing the list of function words. The last law really 
exemplifies the principle of economy of effort: shorter words 

require less effort to reproduce, and thus are used more 

frequently. This "law" can be confirmed by considering the above 

model of word generation by a monkey. It is easy to see that the 

probability of generating a word decreases with length, the 

probability of a word from non-whitespace characters is: 

                                                  (3.13.17) 

where is the probability of generating a gap. 

Although Zipf's law gives interesting general characteristics 

of words in corpora, in general some limitations of its 

applicability in obtaining the statistical characteristics of 

collections of documents consisting of many independent 
documents of different authors have been noticed. Zipf's laws are 

satisfied not only by words from one text, but by many objects of 

the modern information space. 
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Questions to control 

1. Give examples of graphs that (a) can and (b) 

cannot be bypassed without passing through any connection 

twice. 
2. Formulate the concept of a social network. 

3. List the main characteristics of complex networks. 

4. What characteristics of Erdős-Rényi networks do 

you know? 

5. What is the average minimum path (SP)? 

6. How does the average minimum path (SP) for a) a 
square grid, b) an Erdős-Rényi network, c) a small Watts-

Strogatz world depend on the size of the network? 

7. What is the clustering coefficient of this node? 

What property of the network does it characterize? 

8. Find the clustering coefficient for the nodes of the 
depicted graphs 

 
9. In which case is Efficiency a better 

characterization of network properties than average shortest 

path (SP)? Give a specific example. 

10. How is the average shortest path (SP) calculated 

for a network with link weights? 
11. How is the number of nearest m -th neighbors 

related to and ? 

12. Formulate the Molloy-Read criterion. 

13. Write down the node degree distribution function 

for the Erdős-Rényi network in the case of a large number of 

nodes. 

14. Write down the node degree distribution function 
for a scale-invariant (SF) network in the case of a large number 

of nodes. What is the peculiarity of the normalization of this 

function? 

15. Give an example of a deterministic scale-invariant 

network. 
16. Draw several construction steps (u, v) – a flower 

for (1,2), (1,3), (1,4), (2,2), (2,3), (3,3). 

mz 1z 2z



 205 
 

17. What is the difference between algorithms for 
building a small world (small world) in the Watts-Strogatz and 

Watts-Strogatz-Newman models? 

18. Algorithm for constructing a percolation network. 

19. What is the percolation threshold? 

20. What is the percolation threshold for a one-
dimensional lattice? For infinitely dimensional? 

21. What is common and different in the properties of 

an infinite (giant) cluster in a percolation and complex network? 

22. Find Padé approximants for the following 

functions: 

  

23. Derive the Cauchy distribution – (3.4.5). 

24. Show that Planck's formula for thermal radiation 
(3.5.12) satisfies the scaling relation (Wien's law) (3.5.14). 

25. What is the order parameter? 

26. Formulate the main provisions of the 

phenomenological theory of phase transitions of the second 

kind. 

27. Define an infinite cluster. 
28. Draw (qualitatively) the dependence of the density 

of an infinite cluster on the concentration of bonds (nodes). 

29. What are the grounds for asserting that the 

percolation transition is a second-order phase transition? 

30. Fundamentals of cluster analysis. Explain the 
algorithm of hierarchical grouping-union.  

31. Fundamentals of cluster analysis. k-means 

method. What clustering quality function is maximized by this 

algorithm? 

32. Explain the basic concept of cellular automata. 

Give an algorithm for the information diffusion model. 

33. Give the definition and algorithm for calculating 

the Hurst exponent. How does the fractal dimension of a self-

similar time series correlate with the Hurst exponent ? 
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34. Define a linear classification problem. Write and 
explain Rocchio's formula for calculating the vector-profile of a 

category . 

35. Give the formula and algorithm for calculating the 

autocorrelation function. 

36. Give the main distance metrics between 

documents used in cluster analysis. 

37. Boolean i model by isca. Give a definition of DNF 

and bring the query to this form – a logical expression : 

. How many disjunction operations will be used 

in the resulting DNF? 

38. Write a formula for calculating the proximity 

measure of a document and a query in accordance with the 

vector-spatial search model. 

39. Give a Bayesian criterion for a document to 

belong to a certain category. 

40. Derive a formula for calculating the search 

status in accordance with the probabilistic search model. 

41. Support Vector Machine (SVM). The dividing strip 

is given by the system of inequalities: 

 

 What is the width of this band? 

42. Search/classification quality indicators. Write 

formulas for calculating the completeness, accuracy and F – 

measures of information retrieval. Calculate the F – measure if 

the recall value c is 0.8 and the precision value is 0.6. 

43. Latent Semantic Indexing Method (LSA / LSI). 
What is the singular decomposition of a matrix s? Application 

in the LSA / LSI method. 

44. Write a system of equations for recursive 

counting authorship and mediation coefficients _ to algorithm e 

HITS and also carry out the calculation (4 and iterations) for 

the network : 

iC

( )q a b c  

3 4 4;
3 4 6.
x y
x y
 
 



 207 
 

 

45. Lead simulation and simulation model and 

iterative formula for calculating the parameter a  PageRank. 

46. Classic definition . Term  meets in 

document e  with a normalized frequency equal to 0.5. 

Number of documents in the data array containing the term  

is 20 and the total number of documents in the array is 1000. 

What is the value of ? 
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