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Abstract
Link prediction plays an important role in scientific collaboration networks, and can
favourably affect the organization of international scientific projects. In this paper, a meta-
path computed prediction (MPCP) algorithm for link prediction among scientists and
publications is presented. The MPCP algorithm is based on a heterogeneous information
network model composed of authors and keywords in articles retrieved from the Web of
Science database. Two kinds of meta-paths are defined: Author to Author to Author (A-
A-A) and Author to Direction to Author (A-D-A). By calculating A-A-A and A-D-A
using the heterogeneous information network model, the predictive strength of the links
can be computed. The overlap of the meta-paths is also taken into account. By restoring
links and calculating the number of restored links with different standard values, similar
results are achieved for (quantum communication and link prediction). The number of
restored links decreases as a special threshold value increases. The experimental studies
show that, for any threshold value up to 1, at least 50% of links are restored. The results
presented in this paper verify that the algorithm is a feasible means of predicting
collaboration among scientists.

Keywords link prediction . scientific collaboration network . meta-path . randomwalk

1 Introduction

The most ambitious scientific projects, such as the relativistic heavy ion collider and the
international space station, usually involve cooperation among a large number of scientists.
Nowadays, scientists from different countries join together in developing projects and research
that contribute to worldwide progress. Thus, it is important to organize common scientific
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research via scientific collaboration. Scientific collaboration networks are used to describe the
relationship between scientific collaborators on the basis of co-authorship [1]. One of the
earliest studies of the scientific collaboration network was conducted by the famous mathe-
matician Pául Erdös. The cooperation between Erdös and 500 scientists formed a huge
scientific collaboration network [2].

Scientific collaboration networks have the small-world phenomenon, which obey a power-
law distribution [3, 4]. In the early days of scientific collaboration network research, the main
topics concerned the nature of scientific collaboration networks. Scientists investigated cen-
trality indices, clustering, behaviour distribution, and other features of scientific collaboration
networks [3]. The evolution of collaboration networks was also widely studied [5, 6]. Abbasi
et al. studied the features of growing networks with respect to centrality measures, and
described the correlation between authors’ centrality measures and the attachment frequency
of new authors to them. They concluded that the betweenness centrality could be used to
predict the preferential attachment of new nodes [6]. Milojević proposed a model that
explained the principles underlying the formation and evolution of scientific research teams
[7]. These findings were common features of scientific collaboration networks.

Recently, link prediction has been an important issue in the study of scientific collaboration
networks. Kenekayoro et al. investigated whether using machine learning methods to filter
page types could improve the extent to which hyperlink data can be used to indicate the extent
of collaboration between universities [8]. Link prediction aimed to predict missing links in
current networks and new or dissolution links in future networks, which are important for
mining and analysing the evolution of social networks [9]. To improve the predictive perfor-
mance, some scientists proposed some new methods [10–13]. For example, Ghasemian et al.
used the information in collaborative networks to extract features that improve the predictive
performance. Sett et al used a robust and efficient feature set called TMLP (Time-aware Multi-
relational Link Prediction) for link prediction in dynamic heterogeneous networks [14].
Symeonidis et al defined a basic node similarity measure and exploited global graph features
introducing transitive node similarity to optimize the recommendation algorithm [15]. For
another, the study of link structure played an important role in the network [16, 17].

Kenekayoro et al. investigated whether using machine learning methods to filter page types
could improve the extent to which hyperlink data can be used to indicate the extent of
collaboration between universities [8]. Gleich reviewed Google’s PageRank method, which
was developed to evaluate the importance of Webpages via their link structure [9], and He
et al. proposed a link prediction ensemble algorithm to obtain more stable prediction perfor-
mance [10]. Link prediction aimed to predict missing links in current networks and new or
dissolution links in future networks, which are important for mining and analysing the
evolution of social networks [11]. Lue et al. proposed a universal structural consistency index
based on the perturbation of the adjacency matrix that requires no prior knowledge of the
network organization [12], while Ghasemian et al. used the information in collaborative
networks to extract features that improve the predictive performance [13]. Li et al. used an
Expectation–Maximization algorithm to estimate certain parameters and form predictions
based on utility analysis [14], whereas Valverde-Rebaza et al. proposed a friendship prediction
method based on location [15]. Kefalas et al. provided a novel recommendation method based
on the time dimension [16]. Sett et al used a robust and efficient feature set called TMLP
(Time-aware Multi-relational Link Prediction) for link prediction in dynamic heterogeneous
networks [17]. Symeonidis et al defined a basic node similarity measure and exploited global
graph features introducing transitive node similarity to optimize the recommendation
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algorithm [18]. Authors of paper [19] proposed two novel node-coupling clustering ap-
proaches and their extensions for link prediction, which combine the coupling degrees of
the common neighbour nodes of a predicted node-pair with cluster geometries of nodes.
Muhan Zhang and Yixin Chen develop a novel -decaying heuristic theory for link prediction
based on graph neural networks [20]. Haeran Cho and Yi Yu proposed a new link prediction
methodology, with the specific aim of identifying potential interdisciplinary collaboration in a
university-wide collaboration network [21].

Link prediction is the determination of some linkage between two nodes in a network that
have not yet been connected by known nodes and structures. Some of the above studies are
based on nodes, whereas others are based on the network structure. We think that scientific
collaboration networks contain many types of nodes and edges. So, we consider scientific
collaboration networks to be heterogeneous information networks in this paper. Hence, we
propose a meta-path computed prediction (MPCP) algorithm based on meta-paths and random
walks that predicts cooperative relationships. We combine the meta-paths with random walks,
and take the overlaps of the meta-paths into account. Through the restoration of links and
determination of the number of restored links with different standard values, we demonstrate
the excellent performance of the proposed algorithm.

2 Heterogeneous information network model for scientific collaboration
network

2.1 Scientific collaboration network based on co-authors and keywords

In this paper, we address the issue of scientific collaboration networks from the viewpoint of
literature retrieval. Nowadays, most research groups across the world would like to share their
findings by means of publishing papers. Thus, to some extent, the literature in a particular
field, especially published papers, can reveal the intuitive relationships within scientific
collaboration networks.

We used Clarivate Analytics’ Web of Science as the literature retrieval database [22] and
selected quantum communication as the topic. We retrieved 99 literature items published from
January 1st–December 31st, 2017, and constructed a co-authors network and keywords
network using the VOSviewer software [23], as shown in Figs. 1 and 2.

Figure. 1 shows a network of co-authors that published articles related to quantum
communication in 2017. The nodes represent authors and the edges represent common papers
by these authors. The bigger the node, the more articles the author has published concerning
quantum communication. The scientific collaboration network assigns nodes to several clus-
ters describing scientific collaboration communities [24]. In the figures, clusters are indicated
by different colours. For example, in the biggest community, Prof. J.W. Pan made a significant
contribution to quantum communications in 2017, and the network shows his widespread
cooperation with other communities.

The relations among the keywords of the 99 papers are shown in Fig. 2, where each dot
represents a keyword. The size of the dot corresponds to the frequency with which this
keyword was used. According to the frequency of simultaneous use, the keywords are
displayed in different colours. The same colour represents the higher frequency of simulta-
neous use. The two keywords most associated with quantum communication in 2017 were
‘quantum key distribution’ and ‘entanglement concentration’.
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Fig. 1 Co-authorship network of quantum communication built by VOSviewer. Different colours represent
different research groups

Fig. 2 Keywords network of quantum communication built by VOSviewer. Different colours represent different
keywords
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Figures. 1 and 2 demonstrate how a scientific collaboration network can be established by
means of a literature retrieval on the subject of quantum communication. We can acquire some
useful information about research groups and research hotspots from Figs. 1 and 2, respec-
tively. However, the scientific collaboration networks in Figs. 1 and 2 can be classified as
homogeneous information networks [25, 26]—there is a strong dependence between them.
Actually, if we compose the scientific collaboration networks in Figs. 1 and 2 as heterogeneous
information networks, we could acquire more useful information [27–29]. Moreover, it is more
reasonable to make link predictions according to the heterogeneous information networks. For
example, Ma et al. built dynamic heterogeneous information networks to predict neighbour
label distributions [29], while Ozcan et al. proposed a novel multivariate method for link
prediction in evolving heterogeneous networks using a nonlinear autoregressive neural net-
work with external inputs [30]. Li et al. developed a novel integrated framework called the
meta-path feature-based backpropagation neural network model to predict multiple link types
for heterogeneous networks [31].

2.2 Heterogeneous information network model

In this paper, we define a heterogeneous network structuremodel asG= (A, D, R).This is a directed
network inwhichA= {A1, A2,…, An} is a set of nodes representing authors andD= {D1, D2,…, Dn}
is a set of nodes representing research directions. We assume that the research directions can be
described by the keywords extracted from the papers and can be treated as the authors’ research
interests. Assume that R = {RAA,RDD,RAD,RDA} is a set of edges, where RAA = {(Ai,Aj)|Ai,Aj∈A}
denotes the co-authorship between authors Ai and Aj, RDD = {(Di,Dj)|Di,Dj∈ D} describes connec-
tions between keywords Di and Dj, and RDA = {(Di,Aj)|Di∈D, Aj∈A} and RAD = {(Ai,Dj)|Ai∈A,
Dj∈D} are the relationships between authors and keywords.
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Fig. 3 Heterogeneous network structure model for authors and keywords. The upper layer represents the co-
authorship between authors and the bottom layer represents the relationship between different keywords. The link
between the two layers represents the relationship between authors and keywords
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2.3 MPCP algorithm

2.3.1 Meta-path

Let meta-path Ti set Ti ¼ S1 ! R1 S2 ! R2 ⋯ ! Rn−1Sn, where Si∈A∪D and Rj(j =
1, ..., n − 1)is the links between nodes of different types [32, 33]. The main idea of link
prediction is based on meta-paths. Paths containing three or fewer hops (or degrees) are
considered to be strong [34]; otherwise, the path is weak. Strong ties indicate frequent working
partners, whereas weak ties suggest partners with fewer opportunities for cooperation. We
discuss two meta-paths denoting strong ties.

Case 1: A-A-A. Authors may establish partnerships with collaborators or co-authors. In Fig. 4
links between authors of A-A-A type are presented. We made an assumption about connection of
type A1– A2 – A3, using the fact that the authors A1 and A2 are connected, as well as A2 and A3.

Case 2: A-D-A. Authors may establish relationships with people who publish papers with
similar keywords. The links of type A-D-A between authors and common key-word are shown
on the fig. 5. We assumed the links of type A1– D1 – A2 because author A1 published a paper
with the keyword D1, and A2 also published a work with the same keyword.

2.3.2 MPCP model

The nodes in the network are assumed to be independent, as are the links. We predict the
probability of cooperation between authors based on a random walk [35, 36].

Authors

Keywords
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D
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2

3

2

3

A-A-A

Fig. 4 Meta-path: A-A-A
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Let P represent the node connection probability matrix in the structural network:

P ¼ PAA PAD

PDA PDD

� �
ð1Þ

where PAA is an N × N matrix representing the relationships between authors. If there is no
cooperation, the elements will be equal to 0.

Element Pa1a2 of matrix PAA is calculated as:

pa1a2 ¼
N a1∩a2
� �

N a1ð Þ þ N a2ð Þ−N a1∩a2
� � ; if N a1ð ÞN a2ð Þ > 0; else pa1a2 ¼ 0 ð2Þ

In this expression, N(a1) is the number of first-author’s papers, N(a2) is the number of second-
author’s papers, and N(a1∩a2) is the number of common papers written by both authors.

The elements Pad of the N × M matrix PAD are given by:

pad ¼
N a; dð Þ
N að Þ ; if N að Þ > 0; else pad ¼ 0 ð3Þ

Here, N(a,d) is the number of papers published by author a in direction d, and N(a) is the
number of papers published by author a.

The elements Pda of the M × N matrix PDA are calculated as:

pda ¼
N a; dð Þ
N dð Þ ; if N dð Þ > 0; else pda ¼ 0: ð4Þ

In this equation, N(a,d) is the number of papers published by author a in direction d and N(d) is
the number of papers published in direction d.
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Fig. 5 Meta-path: A-D-A
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The elements Pd1d2 of matrix PDD are calculated by:

pd1d2 ¼
N d1∩d2
� �

N d1ð Þ þ N d2ð Þ−N d1∩d2
� � ; if N d1ð ÞN d2ð Þ > 0; else pd1d2 ¼ 0: ð5Þ

In this case, N(d1) is the number of papers published in direction d1, N(d2) is the number of
papers published in direction d2, and N(d1∩d2) is the number of papers in both directions.

Most papers have several keywords. We deem keywords to be similar if they appear in the
same paper. Thus, pd1;d2 ¼ 1 when d1 and d2 appear in the same paper, and pd1;d2 ¼ 0

otherwise.
The proposed method calculates the predictive force of links among pairs of authors by

taking into account their possible links through other authors (Fig. 4, A-A-A) or through
keywords (Fig. 5, A-D-A). The predictive strength of a link is given by:

f aia j
¼ 1− 1−paia j

� �
Hij; ð6Þ

where f aia j
denotes the force of links among pairs of authors ai and aj, and paia j

is the

probability of a direct connection between authors and Hij defined as:

Hij ¼ ∏
K

k¼1
1−paitk ptka j

� �
K > 0

1 K ¼ 0

8<
: : ð7Þ

where tk ∈ A ∪D are intermediate nodes (authors or keywords). Note that tk ≠ ai and tk ≠ aj. K is
the number of intermediate nodes between ai and aj.

In the paper, we set an empirical threshold τ ϵ [0, 1] for the stepwise removal of links with
predictive strength of less than 0.1. Set an empirical α - threshold of restoring links, set α = 0.5 in all
experiments.

To assess the possibility of restoring connections in the network after they have been
destroyed, the following procedure is proposed:

1. Build an initial network for a sample set of documents. Relations are calculated and
normalized to 1 according to the formulas presented above, following matrix (1).

2. For this purpose, links with a weight not less than a threshold τ are removed from the
constructed network.

3. Recalculate new edge weights using formula (6).
4. Calculate the proportion of restored links.

2.4 MPCP algorithm

The proposed prediction algorithm consists of six main steps, which can be described as
follows:

Step 1: Collect author/keyword data from Web of Science.
Step 2: Form a heterogeneous information network G = (A,D,R). Authors and keywords

are used to establish the two layers. The connection weights between the two layers are
determined according to the number of cooperative relationships.

Step 3: Compute A-A-A and A-D-Ameta-paths according to G and generate the meta-path set T.
Step 4: Links with a weight not less than a threshold (τ) are removed from the constructed

network.
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Step 5: Using the proposed algorithm, calculate the connectional strength using Eq. (6). If
the strength of the predictive connection is greater than α =0.5, the link is restored.

Step 6: Calculation of parameters:
Completeness - proportion of restored links equal to the ratio of the number of correctly

restored links to the total number of deleted links; accuracy equal to the ratio of the number of
correctly restored links to the total number of restored links.

Step 7: After restoring of all necessary links, the network of authors will be drawn. Output
of the result about the percentage of restored links.

The time complexity of the presented algorithm the time of the most complex step 3 and is
limited by the values O(NA

3) with NA ≥ ND and O(NA
3 ND) with NA < ND. Where NA denotes

the number of authors (size of the set A), and ND denotes the size of the set D.
The pseudocode of the MPCP algorithm is as follows:
Begin.
READ the source dataset.
FORM the matrix (1).
For τ = 0 to 1 do.
Remove connections with weights not bigger than τ.
Recalculate the weights of edges using formula (6).
Determine parameters: the proportion of restored links and the Build a graph, display the

values.
End For.
End

3 Simulation results and discussion

3.1 Data collection

We obtained two datasets from the Web of Science [22]. The keywords used to extract the
datasets were quantum communication and link prediction, respectively. We collected 99
articles on quantum communication and 132 articles about link prediction published in 2017.

3.2 Simulation results

On a Windows 10 machine, we used a multi-platform Perl language for the subsequent
visualization of Gephi [37]. To construct the author connections subgraph, the distribution
graph of the node degrees was built. The obtained distribution was compared with the work of
Newman [38], and was found to obey a power law for which the recovery percentages are
known.

If the strength of the predictive connection between authors (calculated by Eq. (6)) was
sufficiently large, i.e. greater than 0.5, there was assumed to be a relationship between the
authors, even if this was not determined in advance by direct data collection. In both the
original networks, the most powerful connection edges (having a weight of 1) were removed.
Using the proposed algorithm, we calculated the predictive relationships and the percentage of
bonds thus restored. Note that connections that have not been determined in advance can also
be ‘restored’. This is not an error of the algorithm. In this way, connections that were not
originally taken into account when collecting the data can be re-established.
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Fig. 6 Whole network – source graph with 2314 edges, density 0.02, average degree 6.7, and 63 connected
components

Fig. 7 Predictive network with τ = 0.5 with 6268 edges, density 0.034, average degree 14.6, and 31 connected
components
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Fig. 8 Predictive network with τ = 0.4 with 7495 edges, density 0.04, average degree 14.65, and 29 connected
components

Fig. 9 Predictive network with τ = 0.3 with 10,678 edges, density 0.056, average degree 24.5, and 15 connected
components
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3.3 Quantum communication

First, we deleted all connections with a weight of 1. The number of such edges was 376. Next,
we restored links and calculated the number of restored links for different values of τ. The

Fig. 10 Predictive network with τ = 0.2 with 14,493 edges, density 0.076, average degree 33.2, and 12 connected
components

Fig. 11 Predictive network with τ = 0.1 with 29,176 edges, density 0.15, average degree 66.16, and 3 connected
components
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accuracy of restored links varied from 0.62 to 0.92 (with the opposite tendency relative to
completeness).

The results are presented in Fig. 6–11 and Table 1; they are discussed in Section 4.

3.4 Link prediction

The same process was performed for the topic of link prediction. We deleted all links with a
weight of 1 (876 links) and then restored them (and more) for various values of τ. The
accuracy of restored links varied from 0.60 to 0.88. The results are presented in Fig. 12-17 and
Table 2. They are discussed in Section 4.3.

4 Discussion

Figures. 6 and 12 show the original networks obtained after analysing the data for quantum
communication and link prediction, respectively. These networks were then reconstructed by

Table 1 Number of restored links for various τ on the subject of quantum communication

τ Number of restored links Restored percentage

1.0 186 49.47%
0.9 189 50.27%
0.8 195 51.86%
0.7 222 59.04%
0.6 230 61.17%
0.5 232 61.70%
0.4 233 61.97%
0.3 253 67.29%
0.2 269 71.54%
0.1 279 74.20%

Fig. 12 Whole network – source graph with 1004 edges, density 0.009, average degree 2.99, and 89 connected
components
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restoring edges with a weight f aia j
of not less than τ. The results are shown in Fig. 7–11 and

13–17. The connections with smaller weights were not taken into account, as we believe that

Fig. 13 Predictive network with τ = 0.5 with 2382 edges, density 0.02, average degree 6.99, and 38 connected
components

Fig. 14 Predictive network with τ = 0.4 with 2484 edges, density 0.021, average degree 7.16, and 36 connected
components
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they do not signify a connection. The number of nodes remained constant, and the number of
edges naturally increased as the value of τ decreased. The figures show an increase in network
density with decreasing τ. The results presented in Tables 1 and 2 exhibit a similar trend: the
number of restored links decreases as τ increases. These results demonstrate that the proposed
prediction algorithm can effectively predict cooperation. In the case of link prediction, at least
78% of links are restored for any τ up to 1. However, we networks for quantum communi-
cation are relatively sparse. This sparseness of data has an impact on the prediction results.

Fig. 15 Predictive network with τ = 0.3 with 3154 edges, density 0.025, average degree 8.9, and 25 connected
components

Fig. 16 Predictive network with τ = 0.2 with 5232 edges, density 0.038, average degree 14.01, and 16 connected
components
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Fig. 18 shows the percentage of restored links according to dates in Tables 1, 2. The
experimental studies give essentially different values of the percentage of restored links; it
could be explained more likely by the structure of the entire network, and not only by its
density. The size of the network, the distribution of node degrees, the presence of a “rich club”,
etc., have a significant effect on the restoring of links. Features of network in this case are
determined by the characteristics of the subject area and require further research, experiments
and generalizations. At the same time, the similar behaviour of the “percentage of recovery”
dependence on the threshold gives the opportunity to independently choose threshold values
for researchers in the field of scientometrics within their subject areas.

The ranges of restored links in the first and second examples are different, and are largely
dependent on the density of the networks. The networks considered here are realistic, taken
from the Web of Science database. Even though the minimum percentage of restored links in
the first example is only 49%, this is actually an excellent result—almost half of the deleted
probable connections were restored based on the proposed calculation method.

Fig. 17 Predictive network with τ = 0.1 with 11,402 edges, density 0.07, average degree 28.85, and 14 connected
components

Table 2 Number of restored links for various τ on the subject of link prediction

τ Number of restored links Restored percentage

1.0 688 78.54%
0.9 710 81.05%
0.8 747 85.27%
0.7 762 86.99%
0.6 799 91.21%
0.5 801 91.44%
0.4 814 92.92%
0.3 815 93.04%
0.2 818 93.38%
0.1 873 99.66%
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5 Conclusion

In this paper, we have proposed a new algorithm for predicting the probability of cooperation
among scientists. The proposed algorithm forms a heterogeneous probabilistic network of
relations between authors and descriptors from documents submitted to the Web of Science
database.

On the assumption that scientific collaboration networks are heterogeneous information
networks, an algorithm was developed based on meta-paths and networks with recalculated
probabilistic links between nodes. Simulations of the number of restored links were conducted
using real data from the Web of Science database to demonstrate the efficacy of the algorithm.
Naturally, as the threshold τ increased, the number of restored links decreased and the network
density increased. After removing all implicit connections (with weights of less than 1), almost
50% of the links were restored when τwas set to 1 (the worst-case scenario). The sparseness of
the data had an impact on these predictive results, especially for large-degree nodes.

In future work, we plan to study the relationship between data sparsity and predictive
results. Furthermore, we will investigate the use of deep learning and machine learning to
predict collaboration.
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